cerebellum 发表于 2025-3-21 18:18:50

书目名称Introduction to Liaison Theory and Deficiency Modules影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0473824<br><br>        <br><br>书目名称Introduction to Liaison Theory and Deficiency Modules影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0473824<br><br>        <br><br>书目名称Introduction to Liaison Theory and Deficiency Modules网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0473824<br><br>        <br><br>书目名称Introduction to Liaison Theory and Deficiency Modules网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0473824<br><br>        <br><br>书目名称Introduction to Liaison Theory and Deficiency Modules被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0473824<br><br>        <br><br>书目名称Introduction to Liaison Theory and Deficiency Modules被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0473824<br><br>        <br><br>书目名称Introduction to Liaison Theory and Deficiency Modules年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0473824<br><br>        <br><br>书目名称Introduction to Liaison Theory and Deficiency Modules年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0473824<br><br>        <br><br>书目名称Introduction to Liaison Theory and Deficiency Modules读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0473824<br><br>        <br><br>书目名称Introduction to Liaison Theory and Deficiency Modules读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0473824<br><br>        <br><br>

folliculitis 发表于 2025-3-21 20:39:23

http://reply.papertrans.cn/48/4739/473824/473824_2.png

FEAT 发表于 2025-3-22 02:30:23

Liaison Theory in Arbitrary Codimension, more work in the complete intersection setting than in the more general Gorenstein setting. For this reason, the first version of this book treated only the case of complete intersections. We will still treat the codimension two case in the next chapter.

ingrate 发表于 2025-3-22 08:28:53

http://reply.papertrans.cn/48/4739/473824/473824_4.png

胶状 发表于 2025-3-22 11:21:55

http://reply.papertrans.cn/48/4739/473824/473824_5.png

STING 发表于 2025-3-22 16:51:14

http://reply.papertrans.cn/48/4739/473824/473824_6.png

peritonitis 发表于 2025-3-22 17:14:08

http://reply.papertrans.cn/48/4739/473824/473824_7.png

triptans 发表于 2025-3-22 22:22:45

http://reply.papertrans.cn/48/4739/473824/473824_8.png

尊重 发表于 2025-3-23 01:27:11

Background,ll always make it clear when we are making this assumption. All varieties and subschemes will be assumed to be projective. We shall denote by . the homogeneous polynomial ring .,… .,. and we let ℙ. = ℙ. = Proj . Since . is a graded ring, it is the direct sum of its homogeneous components: . = ⊗..,wh

坚毅 发表于 2025-3-23 09:31:15

Buchsbaum Curves and Liaison Addition,true for curves in ℙ. (for instance see Rao’s theorem, Theorem 1.2.7.) As an illustration of this connection, in this chapter we consider the case of Buchsbaum curves. Recall that a Buchsbaum curve is one whose deficiency module structure is trivial, i.e. it is annihilated by all linear forms (cf. p
页: [1] 2 3 4
查看完整版本: Titlebook: Introduction to Liaison Theory and Deficiency Modules; Juan C. Migliore Book 1998Latest edition Birkhäuser Boston 1998 Deficiency Modules.