全体 发表于 2025-3-21 16:56:56

书目名称Introduction to Hamiltonian Dynamical Systems and the N-Body Problem影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0473756<br><br>        <br><br>书目名称Introduction to Hamiltonian Dynamical Systems and the N-Body Problem影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0473756<br><br>        <br><br>书目名称Introduction to Hamiltonian Dynamical Systems and the N-Body Problem网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0473756<br><br>        <br><br>书目名称Introduction to Hamiltonian Dynamical Systems and the N-Body Problem网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0473756<br><br>        <br><br>书目名称Introduction to Hamiltonian Dynamical Systems and the N-Body Problem被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0473756<br><br>        <br><br>书目名称Introduction to Hamiltonian Dynamical Systems and the N-Body Problem被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0473756<br><br>        <br><br>书目名称Introduction to Hamiltonian Dynamical Systems and the N-Body Problem年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0473756<br><br>        <br><br>书目名称Introduction to Hamiltonian Dynamical Systems and the N-Body Problem年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0473756<br><br>        <br><br>书目名称Introduction to Hamiltonian Dynamical Systems and the N-Body Problem读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0473756<br><br>        <br><br>书目名称Introduction to Hamiltonian Dynamical Systems and the N-Body Problem读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0473756<br><br>        <br><br>

指派 发表于 2025-3-21 21:30:13

Topics in Linear Theory,This chapter contains various special topics in the linear theory of Hamiltonian systems. Therefore, the chapter can be skipped on first reading and referred back to when the need arises. Sections ., ., and . are independent of each other.

Tdd526 发表于 2025-3-22 02:11:59

Symplectic Geometry,This chapter gives a survey of the general global questions in the theory of Hamiltonian systems. It tries to answer the questions: What is .? How to define a Hamiltonian system on a manifold? What is the global reduction theorem for symplectic group actions?

富饶 发表于 2025-3-22 04:39:38

Special Coordinates,Celestial mechanics is replete with special coordinate systems some of which bear the names of the greatest mathematicians of all times. There is an old saying in celestial mechanics: “No set of coordinates is good enough.”

招人嫉妒 发表于 2025-3-22 11:37:39

http://reply.papertrans.cn/48/4738/473756/473756_5.png

Bureaucracy 发表于 2025-3-22 15:07:33

http://reply.papertrans.cn/48/4738/473756/473756_6.png

擦试不掉 发表于 2025-3-22 19:42:02

,Poincaré’s Continuation Method,mall parameter is zero, a periodic solution is obvious, and then by using the implicit function theorem it is shown that the periodic solution is in a family of periodic solutions. Poincaré used these ideas extensively, and they have become known as the .; see Poincaré (.).

notion 发表于 2025-3-22 23:16:21

http://reply.papertrans.cn/48/4738/473756/473756_8.png

Blemish 发表于 2025-3-23 03:47:41

http://reply.papertrans.cn/48/4738/473756/473756_9.png

Abrade 发表于 2025-3-23 08:45:29

http://reply.papertrans.cn/48/4738/473756/473756_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem; Kenneth R. Meyer,Daniel C. Offin Textbook 2017Latest edition Springe