adroit
发表于 2025-3-25 06:30:22
http://reply.papertrans.cn/48/4736/473525/473525_21.png
HEED
发表于 2025-3-25 11:19:31
Introduction to Coding Theory and Algebraic Geometry978-3-0348-9286-5Series ISSN 1661-237X Series E-ISSN 2296-5041
BARGE
发表于 2025-3-25 14:12:24
1661-237X Overview: 978-3-0348-9979-6978-3-0348-9286-5Series ISSN 1661-237X Series E-ISSN 2296-5041
预兆好
发表于 2025-3-25 15:56:03
Self-dual codesons with invariant theory and with lattice sphere packings (cf. Mac Williams and Sloane, 1977, Ch. 19). Recently there has been interest in geometric Goppa codes that are self-dual. For examples see alg.geom. . III. ref. , . Here we give some theorems about self-dual codes.
exclamation
发表于 2025-3-25 21:40:08
http://reply.papertrans.cn/48/4736/473525/473525_25.png
concentrate
发表于 2025-3-26 03:32:08
Goppa Codes...,P. on X a code by evaluating a set of rational functions on X in the points P. . To be precise, let P.,...,P. be rational points of X over F. and set D = P. + ... + P.. Let G be a divisor. We assume first that G has support disjoint from D (i.e. the points P. occur with multiplicity 0 in G).
珊瑚
发表于 2025-3-26 05:02:07
http://reply.papertrans.cn/48/4736/473525/473525_27.png
傲慢人
发表于 2025-3-26 10:08:21
http://reply.papertrans.cn/48/4736/473525/473525_28.png
种属关系
发表于 2025-3-26 14:58:43
Linear codesFrom now on we shall only consider linear codes.
amygdala
发表于 2025-3-26 19:23:19
http://reply.papertrans.cn/48/4736/473525/473525_30.png