aggression 发表于 2025-3-21 18:02:22
书目名称Introduction to Classical Geometries影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0473511<br><br> <br><br>书目名称Introduction to Classical Geometries影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0473511<br><br> <br><br>书目名称Introduction to Classical Geometries网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0473511<br><br> <br><br>书目名称Introduction to Classical Geometries网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0473511<br><br> <br><br>书目名称Introduction to Classical Geometries被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0473511<br><br> <br><br>书目名称Introduction to Classical Geometries被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0473511<br><br> <br><br>书目名称Introduction to Classical Geometries年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0473511<br><br> <br><br>书目名称Introduction to Classical Geometries年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0473511<br><br> <br><br>书目名称Introduction to Classical Geometries读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0473511<br><br> <br><br>书目名称Introduction to Classical Geometries读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0473511<br><br> <br><br>Interferons 发表于 2025-3-21 22:30:47
http://reply.papertrans.cn/48/4736/473511/473511_2.pngClumsy 发表于 2025-3-22 03:36:24
http://reply.papertrans.cn/48/4736/473511/473511_3.pnghedonic 发表于 2025-3-22 08:09:34
http://reply.papertrans.cn/48/4736/473511/473511_4.png阐明 发表于 2025-3-22 09:17:18
http://reply.papertrans.cn/48/4736/473511/473511_5.pngCALL 发表于 2025-3-22 14:36:43
Hyperbolic geometry,In Chapter 3 we saw that elliptic geometry is a non-Euclidean geometry, for any pair of elliptic lines intersect; that is, parallel lines do not exist in that geometry (denial .1 of Postulate V).aplomb 发表于 2025-3-22 19:47:28
http://reply.papertrans.cn/48/4736/473511/473511_7.pngAmbulatory 发表于 2025-3-22 22:47:09
Ana Irene Ramírez Galarza,José SeadePresents all the classical geometries in a unified way, with many illustrations, thus making their understanding easier.Though the proofs and arguments are in general absolutely rigorous, emphasis isJejune 发表于 2025-3-23 03:04:54
http://image.papertrans.cn/i/image/473511.jpg敲竹杠 发表于 2025-3-23 06:18:24
Affine geometry, that constitutes a natural bridge between Euclidean geometry and projective geometry, both from the historic and the formal viewpoints. The reason this is possible is that the group of affine transformations is larger than the Euclidean group and is contained in the group of projective transformations.