美丽动人 发表于 2025-3-21 16:34:39

书目名称Introduction to Axiomatic Set Theory影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0473451<br><br>        <br><br>书目名称Introduction to Axiomatic Set Theory影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0473451<br><br>        <br><br>书目名称Introduction to Axiomatic Set Theory网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0473451<br><br>        <br><br>书目名称Introduction to Axiomatic Set Theory网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0473451<br><br>        <br><br>书目名称Introduction to Axiomatic Set Theory被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0473451<br><br>        <br><br>书目名称Introduction to Axiomatic Set Theory被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0473451<br><br>        <br><br>书目名称Introduction to Axiomatic Set Theory年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0473451<br><br>        <br><br>书目名称Introduction to Axiomatic Set Theory年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0473451<br><br>        <br><br>书目名称Introduction to Axiomatic Set Theory读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0473451<br><br>        <br><br>书目名称Introduction to Axiomatic Set Theory读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0473451<br><br>        <br><br>

Commentary 发表于 2025-3-21 22:26:36

http://reply.papertrans.cn/48/4735/473451/473451_2.png

Mercurial 发表于 2025-3-22 00:41:04

The Zermelo/Fraenkel Axioms of Set Theory,study any other structure in which they hold, just as we study many vector spaces over and above the Euclidean space .. Thus set theory is no different from any other axiomatic theory familiar to the reader. It is, like the theories of groups, rings, fields, vector spaces, lattices, and so on, an . theory.

Enervate 发表于 2025-3-22 08:01:59

Synthese Libraryhttp://image.papertrans.cn/i/image/473451.jpg

渗入 发表于 2025-3-22 09:27:00

http://reply.papertrans.cn/48/4735/473451/473451_5.png

独行者 发表于 2025-3-22 15:58:27

Introduction to Axiomatic Set Theory978-94-010-3144-8Series ISSN 0166-6991 Series E-ISSN 2542-8292

艰苦地移动 发表于 2025-3-22 17:43:44

Ordinals, Cardinals,Let . be a set, all of whose elements lie in the domain of some linear ordering .(.). We say that . is . by . if every non-empty subset of . has a smallest element (mod. .). It is immediate that if . is well ordered by . then every subset of . is also well ordered by . then every subset of . is also well ordered by ..

狂乱 发表于 2025-3-22 22:24:12

The Axiom of Foundation,The axiom of foundation (. for short) is the sentence.in other words, the axiom states that every non-empty set has an element which is disjoint from it.

慢慢流出 发表于 2025-3-23 04:50:17

http://reply.papertrans.cn/48/4735/473451/473451_9.png

Decimate 发表于 2025-3-23 08:04:20

The Set of Expressions,In the first two chapters we constructed, within each universe ., a sort of replica for several of the fundamental ideas of mathematics; the idea of a mapping, for example, or that of a natural number. And we agreed thenceforth to use these words in the senses we had given them in . ,and not at all in their everyday senses.
页: [1] 2 3 4
查看完整版本: Titlebook: Introduction to Axiomatic Set Theory; Jean-Louis Krivine Book 1971 D. Reidel Publishing Company, Dordrecht, Holland 1971 set theory