不溶解 发表于 2025-3-23 11:14:37

https://doi.org/10.1007/978-3-642-46124-8Analytische Zahlentheorie; analytic number theory; arithmetic; boundary element method; number theory; pr

Paraplegia 发表于 2025-3-23 15:14:14

http://reply.papertrans.cn/48/4735/473402/473402_12.png

割让 发表于 2025-3-23 20:23:57

http://reply.papertrans.cn/48/4735/473402/473402_13.png

Enervate 发表于 2025-3-24 00:49:11

The unique factorization theorem,We assume as known the . 1,2,3,…, the . −1,−2,−3,…, and ., which we reckon as an integer. By the . we mean the positive integers together with zero. We assume as known the elementary arithmetical operations on integers.

郊外 发表于 2025-3-24 05:34:18

http://reply.papertrans.cn/48/4735/473402/473402_15.png

好色 发表于 2025-3-24 09:12:20

,Rational approximation of irrationals and Hurwitz’s theorem,Let . be a real number which is irrational. Then given .>0, we know that there exists a rational number ., such that | .−.|<., since the set of rational numbers is dense in the space of real numbers. The problem we now wish to consider is the size of the difference | .−.| as a function of ..

AV-node 发表于 2025-3-24 12:04:33

http://reply.papertrans.cn/48/4735/473402/473402_17.png

Horizon 发表于 2025-3-24 18:13:01

The law of quadratic reciprocity,Let p and q be two distinct odd primes. Then the Legendre symbols . and . are defined. Can . be determined if . is known? Gauss’s Law of quadratic reciprocity shows that that is indeed possible.

反应 发表于 2025-3-24 19:07:16

Arithmetical functions and lattice points,We recall that an arithmetical function is a complex-valued function defined on the set of positive integers. Many of the arithmetical functions we shall consider are integer-valued.

Interlocking 发表于 2025-3-24 23:19:41

http://reply.papertrans.cn/48/4735/473402/473402_20.png
页: 1 [2] 3 4 5 6
查看完整版本: Titlebook: Introduction to Analytic Number Theory; K. Chandrasekharan Book 1968 Springer-Verlag Berlin · Heidelberg 1968 Analytische Zahlentheorie.an