Considerate 发表于 2025-3-21 18:38:08
书目名称Introduction to Algebraic Geometry影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0473392<br><br> <br><br>书目名称Introduction to Algebraic Geometry影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0473392<br><br> <br><br>书目名称Introduction to Algebraic Geometry网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0473392<br><br> <br><br>书目名称Introduction to Algebraic Geometry网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0473392<br><br> <br><br>书目名称Introduction to Algebraic Geometry被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0473392<br><br> <br><br>书目名称Introduction to Algebraic Geometry被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0473392<br><br> <br><br>书目名称Introduction to Algebraic Geometry年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0473392<br><br> <br><br>书目名称Introduction to Algebraic Geometry年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0473392<br><br> <br><br>书目名称Introduction to Algebraic Geometry读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0473392<br><br> <br><br>书目名称Introduction to Algebraic Geometry读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0473392<br><br> <br><br>NIL 发表于 2025-3-21 20:54:45
Igor Kriz,Sophie KrizExplains the motivations behind concepts as they arise, often comparing them to their counterparts in other areas of mathematics.Includes foundational concepts from commutative algebra and details theHiatal-Hernia 发表于 2025-3-22 02:17:40
http://reply.papertrans.cn/48/4734/473392/473392_3.pngIrrepressible 发表于 2025-3-22 05:23:48
https://doi.org/10.1007/978-3-030-62644-0algebraic variety; scheme; commutative algebra; crystalline and motivic cohomology; geometryPalatial 发表于 2025-3-22 08:59:10
http://reply.papertrans.cn/48/4734/473392/473392_5.png得罪 发表于 2025-3-22 14:18:31
Properties of Schemes,It is immediately apparent from the definition, and the basic examples we studied, that the concept of a scheme is far more general than the concept of a variety as introduced in Chap. ., just as a topological space is much more general than a subset of .. What are the properties of schemes we should study?黑豹 发表于 2025-3-22 19:39:23
http://reply.papertrans.cn/48/4734/473392/473392_7.pngmettlesome 发表于 2025-3-23 00:58:49
Sheaves of Modules,spond, for Noetherian schemes, to closed subschemes. A particularly important application of sheaves of ideals is the theory of ., a construction which allows us, for example, to replace a point with a subscheme of codimension 1, while not disturbing (and, in fact, often even improving) smoothness.裂缝 发表于 2025-3-23 03:35:53
http://reply.papertrans.cn/48/4734/473392/473392_9.png四目在模仿 发表于 2025-3-23 06:32:19
http://reply.papertrans.cn/48/4734/473392/473392_10.png