DEIFY 发表于 2025-3-21 17:11:08

书目名称Introducing Monte Carlo Methods with R影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0473332<br><br>        <br><br>书目名称Introducing Monte Carlo Methods with R影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0473332<br><br>        <br><br>书目名称Introducing Monte Carlo Methods with R网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0473332<br><br>        <br><br>书目名称Introducing Monte Carlo Methods with R网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0473332<br><br>        <br><br>书目名称Introducing Monte Carlo Methods with R被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0473332<br><br>        <br><br>书目名称Introducing Monte Carlo Methods with R被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0473332<br><br>        <br><br>书目名称Introducing Monte Carlo Methods with R年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0473332<br><br>        <br><br>书目名称Introducing Monte Carlo Methods with R年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0473332<br><br>        <br><br>书目名称Introducing Monte Carlo Methods with R读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0473332<br><br>        <br><br>书目名称Introducing Monte Carlo Methods with R读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0473332<br><br>        <br><br>

Jacket 发表于 2025-3-21 23:30:48

Monte Carlo Optimization,l maxima (or minima) and are sufficiently attracted by the global maximum (or minimum). The second use, described in Section 5.4, is closer to Chapter 3 in that simulation is used to approximate the function to be optimized.

他一致 发表于 2025-3-22 01:49:35

http://reply.papertrans.cn/48/4734/473332/473332_3.png

Pigeon 发表于 2025-3-22 06:08:37

http://reply.papertrans.cn/48/4734/473332/473332_4.png

Munificent 发表于 2025-3-22 08:54:55

Convergence Monitoring and Adaptation for MCMC Algorithms,separate notions of convergence, namely convergence to stationarity and convergence of ergodic average, in contrast with iid settings. We also discuss several types of convergence diagnostics, primarily those contained in the coda package of Plummer et al. (2006), even though more accurate methods may be available in specific settings.

Infuriate 发表于 2025-3-22 16:15:58

http://reply.papertrans.cn/48/4734/473332/473332_6.png

确定无疑 发表于 2025-3-22 21:01:02

http://reply.papertrans.cn/48/4734/473332/473332_7.png

露天历史剧 发表于 2025-3-22 21:54:37

Textbook 2010ians with a practical understanding of those methods, and there is no better way to develop intuition and skills for simulation than to use simulation to solve statistical problems. .Introducing Monte Carlo Methods with R. covers the main tools used in statistical simulation from a programmer‘s poin

pus840 发表于 2025-3-23 04:16:00

Random Variable Generation,r program. Given the availability of a uniform generator in R, as explained in Section 2.1.1, we do not deal with the specific production of uniform random variables. The most basic techniques relate the distribution to be simulated to a uniform variate by a transform or a particular probabilistic p

我不怕牺牲 发表于 2025-3-23 08:34:28

Monte Carlo Integration,te Carlo methods; that is, taking advantage of the availability of computer-generated random variables to approximate univariate and multidimensional integrals. In Section 3.2, we introduce the basic notion of Monte Carlo approximations as a by-product of the Law of Large Numbers, while Section 3.3
页: [1] 2 3 4 5
查看完整版本: Titlebook: Introducing Monte Carlo Methods with R; Christian Robert,George Casella Textbook 2010 Springer-Verlag New York 2010 Markov chain.Mathemati