Abridge 发表于 2025-3-21 18:18:50

书目名称Interpolation of Rational Matrix Functions影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0472690<br><br>        <br><br>书目名称Interpolation of Rational Matrix Functions影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0472690<br><br>        <br><br>书目名称Interpolation of Rational Matrix Functions网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0472690<br><br>        <br><br>书目名称Interpolation of Rational Matrix Functions网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0472690<br><br>        <br><br>书目名称Interpolation of Rational Matrix Functions被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0472690<br><br>        <br><br>书目名称Interpolation of Rational Matrix Functions被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0472690<br><br>        <br><br>书目名称Interpolation of Rational Matrix Functions年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0472690<br><br>        <br><br>书目名称Interpolation of Rational Matrix Functions年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0472690<br><br>        <br><br>书目名称Interpolation of Rational Matrix Functions读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0472690<br><br>        <br><br>书目名称Interpolation of Rational Matrix Functions读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0472690<br><br>        <br><br>

同音 发表于 2025-3-21 23:31:12

http://reply.papertrans.cn/48/4727/472690/472690_2.png

残暴 发表于 2025-3-22 03:42:46

Null Structure and Interpolation Problems for Matrix Polynomialsout also that .(.) is regular, i.e. det .(.) does not vanish identically. One of our aims is to specify for matrix polynomials in a detailed way the theory developed in the first chapter for analytic matrix functions. We also solve here the first interpolation problem in this book, namely, how to co

IOTA 发表于 2025-3-22 08:35:26

http://reply.papertrans.cn/48/4727/472690/472690_4.png

aplomb 发表于 2025-3-22 11:28:02

Rational Matrix Functionslation problem, namely to build a rational matrix function with a given null and pole structure. Unlike the scalar case, it turns out that even when the solution exists and the value at infinity is specified, it may not be unique. A particular solution can be singled out if additional information is

反抗者 发表于 2025-3-22 16:31:31

Rational Matrix Functions with Null and Pole Structure at Infinity requires a more general realization theory and allows one to solve less restrictive interpolation problems of constructing a rational matrix function with a given null and pole structure. The special case of matrix polynomials, which may be considered as rational matrix functions with only pole at

雄伟 发表于 2025-3-22 20:00:30

http://reply.papertrans.cn/48/4727/472690/472690_7.png

WAX 发表于 2025-3-22 21:40:06

Rational Matrix Functions with ,-Unitary Values on the Unit Circle the case .-unitary values on the unit circle. The developments here parallel those in Chapter 6 for the case of the imaginary axis. The treatment of the null and pole structure at infinity is given additional attention. As in Chapter 6, also here . is a fixed . × . signature matrix.

小母马 发表于 2025-3-23 04:49:48

http://reply.papertrans.cn/48/4727/472690/472690_9.png

Fermentation 发表于 2025-3-23 08:22:20

Interpolation Problems for Rational Matrix Functions Based on Divisibilityshould serve as divisors of the function to be determined. We assume that the poles and zeros of the given divisors are in disjoint regions .., ..,...,.. of the complex plane, and we require that the interpolant . should have the property that for each . the quotient .. should have no zeros or poles
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Interpolation of Rational Matrix Functions; Joseph A. Ball,Israel Gohberg,Leiba Rodman Book 1990 Springer Basel AG 1990 constraint.control