细胞
发表于 2025-3-30 09:08:28
Orthogonal transformation (square-root) implementations of the generalized Chandrasekhar and generaindex of nonstationarity and a corresponding generalized Levinson algorithm. It was also shown that when the nonstationary processes have constant-parameter state-space models, the generalized Levinson algorithms reduce to the generalized Chandrasekhar equations. In this paper we shall show that the
纵火
发表于 2025-3-30 14:14:31
http://reply.papertrans.cn/48/4721/472058/472058_52.png
烦忧
发表于 2025-3-30 20:05:21
http://reply.papertrans.cn/48/4721/472058/472058_53.png
歌唱队
发表于 2025-3-30 21:08:26
Dualite asymptotioue entre les systems de commande adaptative avec modele et les regulateurs a vari un caractère "dual" qui est une extension de la relation de "dualité" existant entre la commande à variance minimale et la commande modale dans le cas des systèmes linéaires à paramètres connus. On montre aussi que les SCAMR de type "explicite" sont équivalents aux SCAMR de type "implicite" qui uti
ineffectual
发表于 2025-3-31 04:06:17
http://reply.papertrans.cn/48/4721/472058/472058_55.png
提名
发表于 2025-3-31 08:54:37
http://reply.papertrans.cn/48/4721/472058/472058_56.png
极为愤怒
发表于 2025-3-31 11:02:43
Specification and estimation of econometric models with generalized expectations, unobserved variables is permitted. This new representation is seen to contain the various econometric proxies as special cases. Furthermore, the generalized expectations representation yields a type of nonlinear state-space model which may be estimated using the techniques already existant in the control theory literature.
Thyroiditis
发表于 2025-3-31 13:23:24
Orthogonal transformation (square-root) implementations of the generalized Chandrasekhar and genera explicit equations of the above algorithms can be replaced by certain implicitly defined J-orthogonal transformation procedures, where J is a signature matrix (zero everywhere except for ±1‘s on the diagonal). In the state-space case, these methods yield the previously-derived fast square-root algorithms of Morf and Kailath.
喷油井
发表于 2025-3-31 20:12:48
http://reply.papertrans.cn/48/4721/472058/472058_59.png