happiness 发表于 2025-3-26 20:59:03
http://reply.papertrans.cn/47/4698/469715/469715_31.png珐琅 发表于 2025-3-27 02:47:09
http://reply.papertrans.cn/47/4698/469715/469715_32.pngInflated 发表于 2025-3-27 05:47:53
nistrativer Hilfen. Obgleich bereichsspezifische Unterschiede hinsichtlich der Partizipation von Sozialklientelen existieren, ist die Sozialbürgerrolle im politisch-administrativen Kontext insgesamt gesehen nur gering verankert. Vertikal dominiert die Sicht “von oben”, der hierarchisch aufgebaute BeChagrin 发表于 2025-3-27 10:00:35
http://reply.papertrans.cn/47/4698/469715/469715_34.pngkindred 发表于 2025-3-27 14:21:29
Comparative Study of Chaos-Embedded Particle Swarm Optimizationer, like other evolutionary algorithms, PSO also suffers from premature convergence and entrapment into local optima when addressing complex multimodal problems. In this paper, we propose a chaos-embedded particle swarm optimization algorithm (CEPSO). In CEPSO, the chaos-based swarm initialization i异端邪说2 发表于 2025-3-27 20:16:23
A Novel Feature Selection Algorithm Based on Aquila Optimizer for COVID-19 Classificationainst the epidemic. This paper is to perform feature selection on the CT image feature sets used for COVID-19 detection to improve the speed and accuracy of detection. In this work, the population-based intelligent optimization algorithm Aquila optimizer is used for feature selection. This feature s多嘴多舌 发表于 2025-3-28 00:06:14
http://reply.papertrans.cn/47/4698/469715/469715_37.pngClumsy 发表于 2025-3-28 02:58:49
http://reply.papertrans.cn/47/4698/469715/469715_38.pngGRATE 发表于 2025-3-28 06:48:56
A Hybrid Multi-objective Optimization Algorithm with Improved Neighborhood Rough Sets for Feature Setimal feature subset with smaller size and higher classification accuracy from high-dimensional data. In this paper, a new approach for feature selection using multi-objective optimization algorithm with improved neighborhood rough sets is proposed. Firstly, the improved neighborhood positive regionAmbiguous 发表于 2025-3-28 13:20:38
http://reply.papertrans.cn/47/4698/469715/469715_40.png