柳树;枯黄 发表于 2025-3-27 00:58:01

Variable Exponent Hölder SpacesWe already dealt in Volume 1 with Hölder spaces H.(Ω) of variable order, in Sections 8.2.1 and 8.2.3 in the case of open sets ., and in Section 8.3 in the general case of quasimetric measure spaces, where embeddings of variable exponent Sobolev spaces into Hölder spaces were established.

demote 发表于 2025-3-27 04:51:50

http://reply.papertrans.cn/47/4684/468331/468331_32.png

BUDGE 发表于 2025-3-27 07:14:58

http://reply.papertrans.cn/47/4684/468331/468331_33.png

Enthralling 发表于 2025-3-27 11:28:06

Grand Lebesgue Spaces on Sets of Infinite MeasureIn this chapter we introduce grand Lebesgue spaces on open sets Ω of infinite measure in ., controlling the integrability of . at infinity by means of a weight (depending also on .); in general, such spaces are different for different ways to introduce dependence of the weight on ..

Externalize 发表于 2025-3-27 16:14:15

http://reply.papertrans.cn/47/4684/468331/468331_35.png

ANTE 发表于 2025-3-27 19:53:20

978-3-319-79326-9Springer International Publishing Switzerland 2016

教唆 发表于 2025-3-27 23:39:29

Integral Operators in Non-Standard Function Spaces978-3-319-21018-6Series ISSN 0255-0156 Series E-ISSN 2296-4878

表状态 发表于 2025-3-28 05:08:23

http://reply.papertrans.cn/47/4684/468331/468331_38.png

inundate 发表于 2025-3-28 06:35:25

http://reply.papertrans.cn/47/4684/468331/468331_39.png

Mindfulness 发表于 2025-3-28 13:12:14

http://reply.papertrans.cn/47/4684/468331/468331_40.png
页: 1 2 3 [4]
查看完整版本: Titlebook: Integral Operators in Non-Standard Function Spaces; Volume 2: Variable E Vakhtang Kokilashvili,Alexander Meskhi,Stefan Samk Book 2016 Sprin