柳树;枯黄 发表于 2025-3-27 00:58:01
Variable Exponent Hölder SpacesWe already dealt in Volume 1 with Hölder spaces H.(Ω) of variable order, in Sections 8.2.1 and 8.2.3 in the case of open sets ., and in Section 8.3 in the general case of quasimetric measure spaces, where embeddings of variable exponent Sobolev spaces into Hölder spaces were established.demote 发表于 2025-3-27 04:51:50
http://reply.papertrans.cn/47/4684/468331/468331_32.pngBUDGE 发表于 2025-3-27 07:14:58
http://reply.papertrans.cn/47/4684/468331/468331_33.pngEnthralling 发表于 2025-3-27 11:28:06
Grand Lebesgue Spaces on Sets of Infinite MeasureIn this chapter we introduce grand Lebesgue spaces on open sets Ω of infinite measure in ., controlling the integrability of . at infinity by means of a weight (depending also on .); in general, such spaces are different for different ways to introduce dependence of the weight on ..Externalize 发表于 2025-3-27 16:14:15
http://reply.papertrans.cn/47/4684/468331/468331_35.pngANTE 发表于 2025-3-27 19:53:20
978-3-319-79326-9Springer International Publishing Switzerland 2016教唆 发表于 2025-3-27 23:39:29
Integral Operators in Non-Standard Function Spaces978-3-319-21018-6Series ISSN 0255-0156 Series E-ISSN 2296-4878表状态 发表于 2025-3-28 05:08:23
http://reply.papertrans.cn/47/4684/468331/468331_38.pnginundate 发表于 2025-3-28 06:35:25
http://reply.papertrans.cn/47/4684/468331/468331_39.pngMindfulness 发表于 2025-3-28 13:12:14
http://reply.papertrans.cn/47/4684/468331/468331_40.png