GENRE
发表于 2025-3-23 10:30:21
http://reply.papertrans.cn/47/4683/468253/468253_11.png
SLAG
发表于 2025-3-23 15:08:22
http://reply.papertrans.cn/47/4683/468253/468253_12.png
脖子
发表于 2025-3-23 20:28:42
http://reply.papertrans.cn/47/4683/468253/468253_13.png
bronchiole
发表于 2025-3-24 02:16:39
http://reply.papertrans.cn/47/4683/468253/468253_14.png
Intrepid
发表于 2025-3-24 03:47:11
http://reply.papertrans.cn/47/4683/468253/468253_15.png
MIRE
发表于 2025-3-24 09:52:56
Blocking Optimal Arborescences, In this paper we show that the following special case is solvable in polynomial time: given a digraph . = (.,.) with a designated root node . ∈ . and arc-costs .:. → ℝ, find a minimum cardinality subset . of the arc set . such that . intersects every minimum .-cost .-arborescence. The algorithm we
施魔法
发表于 2025-3-24 12:01:01
http://reply.papertrans.cn/47/4683/468253/468253_17.png
演讲
发表于 2025-3-24 17:44:08
A Complexity and Approximability Study of the Bilevel Knapsack Problem, weight and profit coefficients in the knapsack problem are encoded in unary, then two of the bilevel variants are solvable in polynomial time, whereas the third is NP-complete. Furthermore we design a polynomial time approximation scheme for this third variant, whereas the other two variants cannot
运气
发表于 2025-3-24 22:53:22
Matroid and Knapsack Center Problems,vertex to its closest center is minimized. In this paper, we consider two important generalizations of .-center, the matroid center problem and the knapsack center problem. Both problems are motivated by recent content distribution network applications. Our contributions can be summarized as follows
激励
发表于 2025-3-25 00:04:59
http://reply.papertrans.cn/47/4683/468253/468253_20.png