GENRE 发表于 2025-3-23 10:30:21

http://reply.papertrans.cn/47/4683/468253/468253_11.png

SLAG 发表于 2025-3-23 15:08:22

http://reply.papertrans.cn/47/4683/468253/468253_12.png

脖子 发表于 2025-3-23 20:28:42

http://reply.papertrans.cn/47/4683/468253/468253_13.png

bronchiole 发表于 2025-3-24 02:16:39

http://reply.papertrans.cn/47/4683/468253/468253_14.png

Intrepid 发表于 2025-3-24 03:47:11

http://reply.papertrans.cn/47/4683/468253/468253_15.png

MIRE 发表于 2025-3-24 09:52:56

Blocking Optimal Arborescences, In this paper we show that the following special case is solvable in polynomial time: given a digraph . = (.,.) with a designated root node . ∈ . and arc-costs .:. → ℝ, find a minimum cardinality subset . of the arc set . such that . intersects every minimum .-cost .-arborescence. The algorithm we

施魔法 发表于 2025-3-24 12:01:01

http://reply.papertrans.cn/47/4683/468253/468253_17.png

演讲 发表于 2025-3-24 17:44:08

A Complexity and Approximability Study of the Bilevel Knapsack Problem, weight and profit coefficients in the knapsack problem are encoded in unary, then two of the bilevel variants are solvable in polynomial time, whereas the third is NP-complete. Furthermore we design a polynomial time approximation scheme for this third variant, whereas the other two variants cannot

运气 发表于 2025-3-24 22:53:22

Matroid and Knapsack Center Problems,vertex to its closest center is minimized. In this paper, we consider two important generalizations of .-center, the matroid center problem and the knapsack center problem. Both problems are motivated by recent content distribution network applications. Our contributions can be summarized as follows

激励 发表于 2025-3-25 00:04:59

http://reply.papertrans.cn/47/4683/468253/468253_20.png
页: 1 [2] 3 4 5 6 7
查看完整版本: Titlebook: Integer Programming and Combinatorial Optimization; 16th International C Michel Goemans,José Correa Conference proceedings 2013 Springer-Ve