编辑才信任
发表于 2025-3-23 13:02:47
,Maxwell’s equations,.6, we briefly treat exterior boundary value problems. Exterior boundary value problems and the existence of wave operators will be dealt with in Chapter 9 in more detail, where we shall present a unified approach to both Maxwell’s equations and the linearized system of acoustics.
Vertebra
发表于 2025-3-23 14:51:12
http://reply.papertrans.cn/47/4665/466487/466487_12.png
Ophthalmoscope
发表于 2025-3-23 20:29:07
978-3-519-02102-5Springer Fachmedien Wiesbaden 1986
你正派
发表于 2025-3-24 00:10:33
http://reply.papertrans.cn/47/4665/466487/466487_14.png
Palatial
发表于 2025-3-24 04:32:13
http://reply.papertrans.cn/47/4665/466487/466487_15.png
Corporeal
发表于 2025-3-24 08:34:14
http://reply.papertrans.cn/47/4665/466487/466487_16.png
CAMEO
发表于 2025-3-24 11:44:30
http://reply.papertrans.cn/47/4665/466487/466487_17.png
curettage
发表于 2025-3-24 16:10:21
http://reply.papertrans.cn/47/4665/466487/466487_18.png
铁砧
发表于 2025-3-24 21:16:50
Linear elasticity,and similarities with the wave equation. The main difference to the systems we have met so far is the fact that in linear elasticity different (non-zero) eigenvalues occur giving rise to different asymptotic behaviour of the corresponding components (cf. the remark after (9.18)).
Entropion
发表于 2025-3-24 23:35:50
Linear thermoelasticity,ve met so far, the underlying operator is non-self-adjoint. Thus the spectral theorem is not applicable and we use semi-group theory instead. On the other hand there are many similarities to linear elasticity. Furthermore the solutions decompose into vibrating and damping terms.