connoisseur 发表于 2025-3-28 16:43:54

Explainability,the decisions and predictions made by the model (Gilpin et al. (Explaining explanations: An overview of interpretability of machine learning, . pp. 80–89, 2018)). It contrasts with the “black box” concept in machine learning (see Chap. . where even its designers cannot explain why a model arrived at

CLEFT 发表于 2025-3-28 20:42:48

http://reply.papertrans.cn/47/4661/466021/466021_42.png

支柱 发表于 2025-3-29 02:11:42

http://reply.papertrans.cn/47/4661/466021/466021_43.png

痴呆 发表于 2025-3-29 07:05:44

http://reply.papertrans.cn/47/4661/466021/466021_44.png

温和女孩 发表于 2025-3-29 08:11:47

http://reply.papertrans.cn/47/4661/466021/466021_45.png

Arteriography 发表于 2025-3-29 12:18:26

http://reply.papertrans.cn/47/4661/466021/466021_46.png

extract 发表于 2025-3-29 17:58:30

http://reply.papertrans.cn/47/4661/466021/466021_47.png

antenna 发表于 2025-3-29 19:47:46

LOps, Data drift, bias.This groundbreaking book transcends traditional machine learning approaches by introducing information measurement methodologies that revolutionize the field...Stemming from a UC Berkeley seminar on experimental design for machine learning tasks, these techniques aim to overco

MITE 发表于 2025-3-30 01:20:42

Textbook 2024he field...Stemming from a UC Berkeley seminar on experimental design for machine learning tasks, these techniques aim to overcome the ‘black box‘ approach of machine learning by reducing conjectures such as magic numbers (hyper-parameters) or model-type bias. Information-based machine learning enab

要控制 发表于 2025-3-30 06:47:38

http://reply.papertrans.cn/47/4661/466021/466021_50.png
页: 1 2 3 4 [5] 6 7
查看完整版本: Titlebook: Information-Driven Machine Learning; Data Science as an E Gerald Friedland Textbook 2024 The Editor(s) (if applicable) and The Author(s), u