otitis-externa 发表于 2025-3-21 16:17:54

书目名称Information Theory影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0465748<br><br>        <br><br>书目名称Information Theory影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0465748<br><br>        <br><br>书目名称Information Theory网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0465748<br><br>        <br><br>书目名称Information Theory网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0465748<br><br>        <br><br>书目名称Information Theory被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0465748<br><br>        <br><br>书目名称Information Theory被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0465748<br><br>        <br><br>书目名称Information Theory年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0465748<br><br>        <br><br>书目名称Information Theory年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0465748<br><br>        <br><br>书目名称Information Theory读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0465748<br><br>        <br><br>书目名称Information Theory读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0465748<br><br>        <br><br>

Biguanides 发表于 2025-3-21 21:35:28

http://reply.papertrans.cn/47/4658/465748/465748_2.png

北极人 发表于 2025-3-22 01:56:08

http://reply.papertrans.cn/47/4658/465748/465748_3.png

Feedback 发表于 2025-3-22 05:03:17

http://reply.papertrans.cn/47/4658/465748/465748_4.png

GULP 发表于 2025-3-22 12:08:04

http://reply.papertrans.cn/47/4658/465748/465748_5.png

画布 发表于 2025-3-22 15:28:09

http://reply.papertrans.cn/47/4658/465748/465748_6.png

竞选运动 发表于 2025-3-22 19:11:01

,This is IT: A Primer on Shannon’s Entropy and Information,onal variables and use logarithm and exponential notations log and exp without specifying the base. We culminate with a simple exposition of a recent proof (2017) of the entropy power inequality (EPI), one of the most fascinating inequalities in the theory.

Mawkish 发表于 2025-3-23 01:07:11

Bertrand Duplantier,Vincent RivasseauProvides a comprehensive review of thermodynamics and information theory.Introduces to Jarzynski‘s equality and Crooks‘ relation.Includes a unique primer on Shannon‘s entropy and information theory.Co

有花 发表于 2025-3-23 04:03:00

Progress in Mathematical Physicshttp://image.papertrans.cn/i/image/465748.jpg

Affection 发表于 2025-3-23 05:36:16

http://reply.papertrans.cn/47/4658/465748/465748_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Information Theory; Poincaré Seminar 201 Bertrand Duplantier,Vincent Rivasseau Book 2021 The Editor(s) (if applicable) and The Author(s), u