FILTH 发表于 2025-3-23 11:42:36

http://reply.papertrans.cn/47/4647/464649/464649_11.png

黄瓜 发表于 2025-3-23 15:31:26

Infinite-Horizon Optimal Control in the Discrete-Time Framework978-1-4614-9038-8Series ISSN 2190-8354 Series E-ISSN 2191-575X

disciplined 发表于 2025-3-23 20:07:29

Related Topics,ference in Blot (Nonlinear Anal.: Theor. Meth. Appl. .(12), e999–e1004 (2009))]. For the scalar case there exists such a principle in Blot (Nonlinear Anal.: Theor. Meth. Appl. .(12), e999–e1004 (2009)) which is based on a reduction to finite horizon and on a work in the finite-horizon setting due to Arkin and Evstigneev.

palette 发表于 2025-3-23 22:18:50

Joël Blot,Naïla HayekExamines the Pontryagin principle using a Karush-Kuhn-Tucker theorem in ordered Banach spaces.Includes findings on the finite-horizon setting based on the Boltyanski and Michel results.Uses various to

acolyte 发表于 2025-3-24 06:07:11

SpringerBriefs in Optimizationhttp://image.papertrans.cn/i/image/464649.jpg

雪上轻舟飞过 发表于 2025-3-24 07:24:08

http://reply.papertrans.cn/47/4647/464649/464649_16.png

promote 发表于 2025-3-24 12:43:12

http://reply.papertrans.cn/47/4647/464649/464649_17.png

PAN 发表于 2025-3-24 17:51:38

Book 2014ciples. Several Pontryagin principles  are described which govern systems and various criteria which define the notions of optimality, along with a detailed analysis of how each Pontryagin principle relate to each other. The Pontryagin principle is examined in a stochastic setting and results are gi

窃喜 发表于 2025-3-24 19:12:33

http://reply.papertrans.cn/47/4647/464649/464649_19.png

nullify 发表于 2025-3-25 02:55:23

http://reply.papertrans.cn/47/4647/464649/464649_20.png
页: 1 [2] 3 4
查看完整版本: Titlebook: Infinite-Horizon Optimal Control in the Discrete-Time Framework; Joël Blot,Naïla Hayek Book 2014 Joël Blot, Naïla Hayek 2014 Infinite Hori