FILTH 发表于 2025-3-23 11:42:36
http://reply.papertrans.cn/47/4647/464649/464649_11.png黄瓜 发表于 2025-3-23 15:31:26
Infinite-Horizon Optimal Control in the Discrete-Time Framework978-1-4614-9038-8Series ISSN 2190-8354 Series E-ISSN 2191-575Xdisciplined 发表于 2025-3-23 20:07:29
Related Topics,ference in Blot (Nonlinear Anal.: Theor. Meth. Appl. .(12), e999–e1004 (2009))]. For the scalar case there exists such a principle in Blot (Nonlinear Anal.: Theor. Meth. Appl. .(12), e999–e1004 (2009)) which is based on a reduction to finite horizon and on a work in the finite-horizon setting due to Arkin and Evstigneev.palette 发表于 2025-3-23 22:18:50
Joël Blot,Naïla HayekExamines the Pontryagin principle using a Karush-Kuhn-Tucker theorem in ordered Banach spaces.Includes findings on the finite-horizon setting based on the Boltyanski and Michel results.Uses various toacolyte 发表于 2025-3-24 06:07:11
SpringerBriefs in Optimizationhttp://image.papertrans.cn/i/image/464649.jpg雪上轻舟飞过 发表于 2025-3-24 07:24:08
http://reply.papertrans.cn/47/4647/464649/464649_16.pngpromote 发表于 2025-3-24 12:43:12
http://reply.papertrans.cn/47/4647/464649/464649_17.pngPAN 发表于 2025-3-24 17:51:38
Book 2014ciples. Several Pontryagin principles are described which govern systems and various criteria which define the notions of optimality, along with a detailed analysis of how each Pontryagin principle relate to each other. The Pontryagin principle is examined in a stochastic setting and results are gi窃喜 发表于 2025-3-24 19:12:33
http://reply.papertrans.cn/47/4647/464649/464649_19.pngnullify 发表于 2025-3-25 02:55:23
http://reply.papertrans.cn/47/4647/464649/464649_20.png