忠诚
发表于 2025-3-21 18:55:19
书目名称Industrial Archaeology影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0463954<br><br> <br><br>书目名称Industrial Archaeology影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0463954<br><br> <br><br>书目名称Industrial Archaeology网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0463954<br><br> <br><br>书目名称Industrial Archaeology网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0463954<br><br> <br><br>书目名称Industrial Archaeology被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0463954<br><br> <br><br>书目名称Industrial Archaeology被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0463954<br><br> <br><br>书目名称Industrial Archaeology年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0463954<br><br> <br><br>书目名称Industrial Archaeology年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0463954<br><br> <br><br>书目名称Industrial Archaeology读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0463954<br><br> <br><br>书目名称Industrial Archaeology读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0463954<br><br> <br><br>
GRUEL
发表于 2025-3-21 21:27:39
http://reply.papertrans.cn/47/4640/463954/463954_2.png
BILIO
发表于 2025-3-22 01:28:01
“Social Workers”isticated multi-scalar networks of production, exchange, distribution and consumption that transformed the Modern Era, we are expanding our primary subject of enquiry to include the complicated links between households, settlements and workplaces. And by considering the impacts of industrialization
一个搅动不安
发表于 2025-3-22 06:18:59
http://reply.papertrans.cn/47/4640/463954/463954_4.png
stress-response
发表于 2025-3-22 09:06:09
http://reply.papertrans.cn/47/4640/463954/463954_5.png
我没有强迫
发表于 2025-3-22 14:02:44
http://reply.papertrans.cn/47/4640/463954/463954_6.png
FAR
发表于 2025-3-22 18:01:01
http://reply.papertrans.cn/47/4640/463954/463954_7.png
vitrectomy
发表于 2025-3-22 23:17:13
http://reply.papertrans.cn/47/4640/463954/463954_8.png
粗俗人
发表于 2025-3-23 04:40:20
http://reply.papertrans.cn/47/4640/463954/463954_9.png
去才蔑视
发表于 2025-3-23 09:03:10
David Cranstoned the input frames by highlighting 49 landmarks characterizing the emotion’ regions of interest, and applying an edge-based filter. We evaluated 12 CNN architectures for the appearance-based encoders on three benchmarks. The ResNet18 model managed to be the best performing combination with the LSTM