melancholy
发表于 2025-3-21 19:18:29
书目名称Incompleteness for Higher-Order Arithmetic影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0463328<br><br> <br><br>书目名称Incompleteness for Higher-Order Arithmetic影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0463328<br><br> <br><br>书目名称Incompleteness for Higher-Order Arithmetic网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0463328<br><br> <br><br>书目名称Incompleteness for Higher-Order Arithmetic网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0463328<br><br> <br><br>书目名称Incompleteness for Higher-Order Arithmetic被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0463328<br><br> <br><br>书目名称Incompleteness for Higher-Order Arithmetic被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0463328<br><br> <br><br>书目名称Incompleteness for Higher-Order Arithmetic年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0463328<br><br> <br><br>书目名称Incompleteness for Higher-Order Arithmetic年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0463328<br><br> <br><br>书目名称Incompleteness for Higher-Order Arithmetic读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0463328<br><br> <br><br>书目名称Incompleteness for Higher-Order Arithmetic读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0463328<br><br> <br><br>
companion
发表于 2025-3-21 20:36:38
The Boldface Martin-Harrington Theorem in , ., . exists. In this chapter, I prove the Boldface Martin-Harrington Theorem in . . In Sect. ., I prove in . that if for any real . exists, then . holds. In Sect. ., I prove in . that . implies that for any real ., . exists.
可触知
发表于 2025-3-22 02:53:04
http://reply.papertrans.cn/47/4634/463328/463328_3.png
刻苦读书
发表于 2025-3-22 05:48:18
Introduction and Preliminaries,., . and .. This should provide the reader with a good picture of the background and put the main results in this book into perspective. In Sect. ., I review some of the notions and facts from Set Theory used in this book. In Sect. ., I introduce the main research problems and outline the structure of this book.
RALES
发表于 2025-3-22 12:21:50
The Boldface Martin-Harrington Theorem in , ., . exists. In this chapter, I prove the Boldface Martin-Harrington Theorem in . . In Sect. ., I prove in . that if for any real . exists, then . holds. In Sect. ., I prove in . that . implies that for any real ., . exists.
灰姑娘
发表于 2025-3-22 13:00:40
http://reply.papertrans.cn/47/4634/463328/463328_6.png
懒惰人民
发表于 2025-3-22 17:50:59
A Minimal System,In this chapter, we prove the following results..As a corollary, “.implies that .exists” is neither provable in .nor in ., i.e. .is the minimal system of higher-order arithmetic for proving that “.implies that . exists”.
fleeting
发表于 2025-3-23 00:03:40
http://reply.papertrans.cn/47/4634/463328/463328_8.png
Canyon
发表于 2025-3-23 04:03:36
http://reply.papertrans.cn/47/4634/463328/463328_9.png
挑剔小责
发表于 2025-3-23 08:13:03
http://reply.papertrans.cn/47/4634/463328/463328_10.png