有斑点 发表于 2025-3-26 23:23:24

Hierarchical Graph Convolutional Network for Skeleton-Based Action Recognitiony ignore the topological structure of the skeleton which is very important for action recognition. Recently, Graph Convolutional Networks (GCNs) achieve remarkable performance in modeling non-Euclidean structures. However, current graph convolutional networks lack the capacity of modeling hierarchic

单调女 发表于 2025-3-27 03:47:10

http://reply.papertrans.cn/47/4615/461490/461490_32.png

organism 发表于 2025-3-27 08:00:31

http://reply.papertrans.cn/47/4615/461490/461490_33.png

adumbrate 发表于 2025-3-27 12:38:04

http://reply.papertrans.cn/47/4615/461490/461490_34.png

暴行 发表于 2025-3-27 16:14:29

http://reply.papertrans.cn/47/4615/461490/461490_35.png

起来了 发表于 2025-3-27 17:55:56

http://reply.papertrans.cn/47/4615/461490/461490_36.png

CRAFT 发表于 2025-3-27 22:01:26

Semantic Segmentation of Street Scenes Using Disparity Informationlent results on several semantic segmentation benchmarks. Most of them, however, only exploit RGB information. Due to the development of stereo matching algorithms, disparity maps can be more easily acquired. Structural information encoded in disparity can be treated as supplementary information of

前奏曲 发表于 2025-3-28 02:30:57

http://reply.papertrans.cn/47/4615/461490/461490_38.png

联想记忆 发表于 2025-3-28 06:54:32

http://reply.papertrans.cn/47/4615/461490/461490_39.png

反馈 发表于 2025-3-28 11:45:35

Residual Joint Attention Network with Graph Structure Inference for Object Detectionng on the improvement of the feature extraction, we propose Residual Joint Attention Network, a convolutional neural network using a residual joint attention module which is composed of a spatial attention branch, a channel attention branch, and a residual learning branch within an advanced object d
页: 1 2 3 [4] 5 6 7
查看完整版本: Titlebook: Image and Graphics; 10th International C Yao Zhao,Nick Barnes,Chunyu Lin Conference proceedings 2019 Springer Nature Switzerland AG 2019 ar