悲痛
发表于 2025-3-30 08:52:55
O. Sigmund,S. Torquato,L. V. Gibiansky,I. A. Aksaycate transformers as defining sets of morphisms. A precise formulation of this idea shows that it is mathematically natural. We give two constructions: one, ., taking predicate transformers to sets of morphisms; and the other, . taking sets of morphisms to predicate transformers The naturality is sh
抓住他投降
发表于 2025-3-30 15:05:20
http://reply.papertrans.cn/47/4607/460646/460646_52.png
勾引
发表于 2025-3-30 16:48:07
http://reply.papertrans.cn/47/4607/460646/460646_53.png
STING
发表于 2025-3-30 21:03:50
http://reply.papertrans.cn/47/4607/460646/460646_54.png
mortuary
发表于 2025-3-31 01:19:07
http://reply.papertrans.cn/47/4607/460646/460646_55.png
变白
发表于 2025-3-31 07:07:11
M. V. Srinivas1,G. J. Dvorakeach signature Σ; a category (or set) of Σ-. for each Σ; and a Σ-. relation, between Σ-sentences and Σ-models, for each Σ. The intuition of the basic axiom for institutions is that .. This paper enriches institutions with sentence morphisms to model proofs, and uses this to explicate the notion of a
整洁
发表于 2025-3-31 10:13:50
http://reply.papertrans.cn/47/4607/460646/460646_57.png
Deceit
发表于 2025-3-31 13:45:24
http://reply.papertrans.cn/47/4607/460646/460646_58.png
尖叫
发表于 2025-3-31 19:06:13
H. Irschik,C. Adam,R. Heuer,F. Zieglereach signature Σ; a category (or set) of Σ-. for each Σ; and a Σ-. relation, between Σ-sentences and Σ-models, for each Σ. The intuition of the basic axiom for institutions is that .. This paper enriches institutions with sentence morphisms to model proofs, and uses this to explicate the notion of a
ALT
发表于 2025-4-1 01:24:34
http://reply.papertrans.cn/47/4607/460646/460646_60.png