悲痛 发表于 2025-3-30 08:52:55
O. Sigmund,S. Torquato,L. V. Gibiansky,I. A. Aksaycate transformers as defining sets of morphisms. A precise formulation of this idea shows that it is mathematically natural. We give two constructions: one, ., taking predicate transformers to sets of morphisms; and the other, . taking sets of morphisms to predicate transformers The naturality is sh抓住他投降 发表于 2025-3-30 15:05:20
http://reply.papertrans.cn/47/4607/460646/460646_52.png勾引 发表于 2025-3-30 16:48:07
http://reply.papertrans.cn/47/4607/460646/460646_53.pngSTING 发表于 2025-3-30 21:03:50
http://reply.papertrans.cn/47/4607/460646/460646_54.pngmortuary 发表于 2025-3-31 01:19:07
http://reply.papertrans.cn/47/4607/460646/460646_55.png变白 发表于 2025-3-31 07:07:11
M. V. Srinivas1,G. J. Dvorakeach signature Σ; a category (or set) of Σ-. for each Σ; and a Σ-. relation, between Σ-sentences and Σ-models, for each Σ. The intuition of the basic axiom for institutions is that .. This paper enriches institutions with sentence morphisms to model proofs, and uses this to explicate the notion of a整洁 发表于 2025-3-31 10:13:50
http://reply.papertrans.cn/47/4607/460646/460646_57.pngDeceit 发表于 2025-3-31 13:45:24
http://reply.papertrans.cn/47/4607/460646/460646_58.png尖叫 发表于 2025-3-31 19:06:13
H. Irschik,C. Adam,R. Heuer,F. Zieglereach signature Σ; a category (or set) of Σ-. for each Σ; and a Σ-. relation, between Σ-sentences and Σ-models, for each Σ. The intuition of the basic axiom for institutions is that .. This paper enriches institutions with sentence morphisms to model proofs, and uses this to explicate the notion of aALT 发表于 2025-4-1 01:24:34
http://reply.papertrans.cn/47/4607/460646/460646_60.png