黑暗社会
发表于 2025-3-21 17:24:11
书目名称Hyperspherical Harmonics影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0430694<br><br> <br><br>书目名称Hyperspherical Harmonics影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0430694<br><br> <br><br>书目名称Hyperspherical Harmonics网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0430694<br><br> <br><br>书目名称Hyperspherical Harmonics网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0430694<br><br> <br><br>书目名称Hyperspherical Harmonics被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0430694<br><br> <br><br>书目名称Hyperspherical Harmonics被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0430694<br><br> <br><br>书目名称Hyperspherical Harmonics年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0430694<br><br> <br><br>书目名称Hyperspherical Harmonics年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0430694<br><br> <br><br>书目名称Hyperspherical Harmonics读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0430694<br><br> <br><br>书目名称Hyperspherical Harmonics读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0430694<br><br> <br><br>
urethritis
发表于 2025-3-21 23:09:53
,Fock’s Treatment of Hydrogenlike Atoms and its Generalization,relationship between the 4-dimensional hyperspherical harmonics and hydrogenlike wave functions. V. Fock (1935) was able to show that such a relationship does indeed exist. His argument is as follows:
深渊
发表于 2025-3-22 03:57:32
Symmetry-Adapted Hyperspherical Harmonics,al harmonics as a basis for constructing solutions to the many-particle Schrödinger equation, it is desirable to start with a set of harmonics which are eigenfunctions of total orbital angular momentum.
长矛
发表于 2025-3-22 06:59:19
http://reply.papertrans.cn/44/4307/430694/430694_4.png
成份
发表于 2025-3-22 08:47:20
Many-Dimensional Hydrogenlike Wave Functions in Direct Space,ect space (by means of a slight modification of the method normally used to treat the hydrogen atom), and it is interesting to compare the direct-space solution with the reciprocal-space method discussed above.
brother
发表于 2025-3-22 13:57:09
http://reply.papertrans.cn/44/4307/430694/430694_6.png
值得尊敬
发表于 2025-3-22 17:30:49
Reidel Texts in the Mathematical Scienceshttp://image.papertrans.cn/h/image/430694.jpg
拥护者
发表于 2025-3-23 00:14:52
http://reply.papertrans.cn/44/4307/430694/430694_8.png
commune
发表于 2025-3-23 02:37:48
Harmonic Polynomials,p: . We can also define the generalized Laplacian operator Δ by . A homogeneous polynomial of order n in the coordinates x.,x.,……,x.. is defined to be a polynomial of the form: . where A, B, C, etc are constants, and
Cabinet
发表于 2025-3-23 08:38:18
http://reply.papertrans.cn/44/4307/430694/430694_10.png