fumble 发表于 2025-3-21 17:49:54

书目名称Hyperbolic Triangle Centers影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0430608<br><br>        <br><br>书目名称Hyperbolic Triangle Centers影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0430608<br><br>        <br><br>书目名称Hyperbolic Triangle Centers网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0430608<br><br>        <br><br>书目名称Hyperbolic Triangle Centers网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0430608<br><br>        <br><br>书目名称Hyperbolic Triangle Centers被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0430608<br><br>        <br><br>书目名称Hyperbolic Triangle Centers被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0430608<br><br>        <br><br>书目名称Hyperbolic Triangle Centers年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0430608<br><br>        <br><br>书目名称Hyperbolic Triangle Centers年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0430608<br><br>        <br><br>书目名称Hyperbolic Triangle Centers读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0430608<br><br>        <br><br>书目名称Hyperbolic Triangle Centers读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0430608<br><br>        <br><br>

炼油厂 发表于 2025-3-21 21:52:05

Gyrotriangle Gyrocentersgyrotriangle circumgyrocenter, ingyrocenter and orthogyrocenter, respectively. These gyrocenters are determined in this chapter in terms of their gyrobarycentric coordinate representations with respect to the vertices of their reference gyrotriangles.

cancellous-bone 发表于 2025-3-22 00:25:54

Book 2010 Einstein’s special theory of relativity, the purpose of his new book is to introduce hyperbolic barycentric coordinates, another important concept to embed Euclidean geometry into hyperbolic geometry. It will be demonstrated that, in full analogy to classical mechanics where barycentric coordinates

angina-pectoris 发表于 2025-3-22 06:44:07

http://reply.papertrans.cn/44/4307/430608/430608_4.png

Anal-Canal 发表于 2025-3-22 08:57:42

http://reply.papertrans.cn/44/4307/430608/430608_5.png

Nonconformist 发表于 2025-3-22 13:33:15

When Einstein Meets Minkowskifour-vector formalism of Einstein’s special theory of relativity, along with its relevant consequences to the study of hyperbolic geometry in Part II and hyperbolic triangle centers in Part III of the book.

可卡 发表于 2025-3-22 17:59:08

Epilogueition law of hyperbolic geometry, which is commutative. This Epilogue of the book may thus serve as the Prologue for the future of Einstein’s special relativity theory as a theory regulated by the hyperbolic geometry of Bolyai and Lobachevsky.

Overthrow 发表于 2025-3-22 21:43:47

Euclidean and Hyperbolic Barycentric Coordinatesmechanics. Theorem 3.3 naturally suggests the introduction of the concept of barycentric coordinates into Euclidean geometry. Guided by analogies, we will see in this chapter how Theorem 3.2 naturally suggests the introduction of the concept of barycentric coordinates into hyperbolic geometry, where they are called gyrobarycentric coordinates.

巨头 发表于 2025-3-23 01:24:53

http://reply.papertrans.cn/44/4307/430608/430608_9.png

minimal 发表于 2025-3-23 08:28:16

Gyrotriangle Gyroceviansat gyrocevians generate in gyrotriangles is presented. As an application, a special gyrocevian that generates special ingyrocircles is studied. Furthermore, gyrocevian concurrency conditions are uncovered and the hyperbolic version of the Theorem of Ceva is presented along with the related hyperbolic Brocard points.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Hyperbolic Triangle Centers; The Special Relativi A.A. Ungar Book 2010 Springer Science+Business Media B.V. 2010 Application special relati