瘦削
发表于 2025-3-21 16:48:33
书目名称Hyperbolic Partial Differential Equations影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0430594<br><br> <br><br>书目名称Hyperbolic Partial Differential Equations影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0430594<br><br> <br><br>书目名称Hyperbolic Partial Differential Equations网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0430594<br><br> <br><br>书目名称Hyperbolic Partial Differential Equations网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0430594<br><br> <br><br>书目名称Hyperbolic Partial Differential Equations被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0430594<br><br> <br><br>书目名称Hyperbolic Partial Differential Equations被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0430594<br><br> <br><br>书目名称Hyperbolic Partial Differential Equations年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0430594<br><br> <br><br>书目名称Hyperbolic Partial Differential Equations年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0430594<br><br> <br><br>书目名称Hyperbolic Partial Differential Equations读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0430594<br><br> <br><br>书目名称Hyperbolic Partial Differential Equations读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0430594<br><br> <br><br>
Motilin
发表于 2025-3-21 22:26:06
978-0-387-87822-5Springer-Verlag New York 2009
不来
发表于 2025-3-22 03:19:11
Hyperbolic Partial Differential Equations978-0-387-87823-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
包裹
发表于 2025-3-22 08:35:05
Vector Fields and Integral Curves,Throughout the book we will use the notation . to denote the space R. with variable . similarly, . will denote the plane with coordinates (.,.), and so on.
Brittle
发表于 2025-3-22 11:20:57
Operators and Systems in the Plane,We will work in the plane R. with coordinates (., .). .. . ∈ N ..Here, the coefficients .. are .., given functions (to simplify).
Esophagus
发表于 2025-3-22 13:59:25
Nonlinear First Order Equations,We consider in . the Cauchy problem with data .. given on the initial surface Σ. = { .. = 0 } for the quasilinear scalar equation The coefficients . = (. 1,…,..) and . are given real .. functions on .,and .. : R. → R is a given .. function. We look for a .. real solution.
否认
发表于 2025-3-22 19:56:58
http://reply.papertrans.cn/44/4306/430594/430594_7.png
耕种
发表于 2025-3-23 00:02:52
Energy Inequalities for the Wave Equation,We explain in this chapter what energy inequalities for the wave equation are, and how to obtain them, starting from the simplest cases.
frugal
发表于 2025-3-23 03:27:10
http://reply.papertrans.cn/44/4306/430594/430594_9.png
Certainty
发表于 2025-3-23 07:49:44
http://reply.papertrans.cn/44/4306/430594/430594_10.png