阻挡 发表于 2025-3-26 22:33:39
Intrinsic Distances for Domains,Let . be a complex space. We denote its Carathéodory pseudo-distance by .., (see (3.1.1)), and the induced inner pseudo-distance by ..., (see (1.1.2)). While the Kobayashi pseudo-distance .. is always inner (see (3.1.15)), the Carathéodory pseudo-distance .. need not be (see Examples (3.1.25), (3.1.26), (3.1.27) and (3.1.28).abstemious 发表于 2025-3-27 01:20:31
978-3-642-08339-6Springer-Verlag Berlin Heidelberg 1998妨碍 发表于 2025-3-27 07:33:26
http://reply.papertrans.cn/44/4306/430583/430583_33.pngfinite 发表于 2025-3-27 10:36:50
Shoshichi KobayashiThe author is an undisputed leader in his field, and.the author of several other successful booksregale 发表于 2025-3-27 15:47:58
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/h/image/430583.jpgPANEL 发表于 2025-3-27 18:29:20
http://reply.papertrans.cn/44/4306/430583/430583_36.pngCommunicate 发表于 2025-3-28 01:37:21
http://reply.papertrans.cn/44/4306/430583/430583_37.png悲痛 发表于 2025-3-28 05:30:26
Value Distributions,sign a decomposable (. + 1)-vector . = .. ∧ … ∧ .. ∈ ∧..... which is determined, up to a constant factor, by the subspace. Conversely, each decomposable (. + 1)-vector . determines a .-plane in ..., i.e., a (. + 1)-dimensional vector subspace of ... both of which will be denoted by the same symbol [.]. This correspondence defines the .MOCK 发表于 2025-3-28 06:36:11
0072-7830 hensive and systematic account on the Carathéodory and Kobayashi distances, hyperbolic complex spaces and holomorphic mappings with geometric methods. A very complete list of references should be useful for prospective researchers in this area.978-3-642-08339-6978-3-662-03582-5Series ISSN 0072-7830 Series E-ISSN 2196-9701xanthelasma 发表于 2025-3-28 13:14:37
http://reply.papertrans.cn/44/4306/430583/430583_40.png