cessation
发表于 2025-3-21 18:08:46
书目名称Human and Machine Learning影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0429586<br><br> <br><br>书目名称Human and Machine Learning影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0429586<br><br> <br><br>书目名称Human and Machine Learning网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0429586<br><br> <br><br>书目名称Human and Machine Learning网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0429586<br><br> <br><br>书目名称Human and Machine Learning被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0429586<br><br> <br><br>书目名称Human and Machine Learning被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0429586<br><br> <br><br>书目名称Human and Machine Learning年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0429586<br><br> <br><br>书目名称Human and Machine Learning年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0429586<br><br> <br><br>书目名称Human and Machine Learning读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0429586<br><br> <br><br>书目名称Human and Machine Learning读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0429586<br><br> <br><br>
Harpoon
发表于 2025-3-21 20:39:10
http://reply.papertrans.cn/43/4296/429586/429586_2.png
即席演说
发表于 2025-3-22 03:33:44
http://reply.papertrans.cn/43/4296/429586/429586_3.png
旅行路线
发表于 2025-3-22 06:28:10
http://reply.papertrans.cn/43/4296/429586/429586_4.png
sebaceous-gland
发表于 2025-3-22 09:05:58
http://reply.papertrans.cn/43/4296/429586/429586_5.png
reject
发表于 2025-3-22 13:24:07
http://reply.papertrans.cn/43/4296/429586/429586_6.png
BOOM
发表于 2025-3-22 17:18:33
Critical Challenges for the Visual Representation of Deep Neural Networksout their interpretability. Visual representation is one way researchers are attempting to make sense of these models and their behaviour. The representation of neural networks raises questions which cross disciplinary boundaries. This chapter draws on a growing collection of interdisciplinary schol
delusion
发表于 2025-3-22 21:38:28
http://reply.papertrans.cn/43/4296/429586/429586_8.png
critique
发表于 2025-3-23 05:12:25
Perturbation-Based Explanations of Prediction Models to neural networks and more general perturbation-based approaches which can be used with arbitrary prediction models. We present an overview of perturbation-based approaches, with focus on the most popular methods (EXPLAIN, IME, LIME). These methods support explanation of individual predictions but
蜿蜒而流
发表于 2025-3-23 07:09:47
http://reply.papertrans.cn/43/4296/429586/429586_10.png