LH941 发表于 2025-3-21 18:10:15
书目名称Homology of Linear Groups影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0428151<br><br> <br><br>书目名称Homology of Linear Groups影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0428151<br><br> <br><br>书目名称Homology of Linear Groups网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0428151<br><br> <br><br>书目名称Homology of Linear Groups网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0428151<br><br> <br><br>书目名称Homology of Linear Groups被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0428151<br><br> <br><br>书目名称Homology of Linear Groups被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0428151<br><br> <br><br>书目名称Homology of Linear Groups年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0428151<br><br> <br><br>书目名称Homology of Linear Groups年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0428151<br><br> <br><br>书目名称Homology of Linear Groups读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0428151<br><br> <br><br>书目名称Homology of Linear Groups读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0428151<br><br> <br><br>多嘴多舌 发表于 2025-3-21 23:47:12
http://reply.papertrans.cn/43/4282/428151/428151_2.pngintangibility 发表于 2025-3-22 01:14:43
http://reply.papertrans.cn/43/4282/428151/428151_3.pngWAG 发表于 2025-3-22 08:36:22
Stability,at the map .is an isomorphism for . ≥ .(.)? The answer is certainly no if for example . is the free abelian group of rank ., but there are many examples for which stability does happen. For example, there are stability results for the sequenceof symmetric groups [.] and also for the mapping class grhermitage 发表于 2025-3-22 10:11:56
Low-dimensional Results, .(.(.),ℤ) ≅ .(.(.),ℤ) for . local with infinite residue field. Thus, one need only consider the former group. In this case, Suslin completely described the structure of .(.(.),ℤ) —it surjects onto the second Milnor .-group . (.) and the kernel of this map is the image of .(.(.),ℤ).Mast-Cell 发表于 2025-3-22 14:16:36
Rank One Groups,known tiling of the hyperbolic plane by .(ℤ)-translates of an ideal triangle (see, e.g. [.], p. 215) and there is the Bruhat-Tits tree associated to a field with discrete valuation. Often, the action implies something about the structure of the group such as the existence of an amalgamated free prodendoscopy 发表于 2025-3-22 18:47:00
Progress in Mathematicshttp://image.papertrans.cn/h/image/428151.jpg假 发表于 2025-3-22 23:18:37
978-3-0348-9523-1Birkhäuser Verlag 2001Benzodiazepines 发表于 2025-3-23 04:17:58
http://reply.papertrans.cn/43/4282/428151/428151_9.pngMeditate 发表于 2025-3-23 06:49:25
Low-dimensional Results, .(.(.),ℤ) ≅ .(.(.),ℤ) for . local with infinite residue field. Thus, one need only consider the former group. In this case, Suslin completely described the structure of .(.(.),ℤ) —it surjects onto the second Milnor .-group . (.) and the kernel of this map is the image of .(.(.),ℤ).