Commentary 发表于 2025-3-25 06:31:18

Pseudo-holomorphic Extension,In this chapter we first give a full boundary value description that . is in . ., . ∈ (0,1), and secondly provide a characterization of . . via the pseudo-holomorphic extension and, as a corollary, we prove that . . has the .-property. The latter means that, for any . ∈ . ., the Toeplitz operator . . maps . . into itself.

贞洁 发表于 2025-3-25 08:33:37

http://reply.papertrans.cn/43/4280/427956/427956_22.png

interlude 发表于 2025-3-25 12:25:32

978-3-540-42625-7Springer-Verlag Berlin Heidelberg 2001

形容词词尾 发表于 2025-3-25 17:57:32

Holomorphic Q Classes978-3-540-45434-2Series ISSN 0075-8434 Series E-ISSN 1617-9692

Polydipsia 发表于 2025-3-25 21:21:25

0075-8434 Overview: Includes supplementary material: 978-3-540-42625-7978-3-540-45434-2Series ISSN 0075-8434 Series E-ISSN 1617-9692

AVANT 发表于 2025-3-26 03:42:10

http://reply.papertrans.cn/43/4280/427956/427956_26.png

发表于 2025-3-26 05:31:49

http://reply.papertrans.cn/43/4280/427956/427956_27.png

Popcorn 发表于 2025-3-26 12:08:48

http://reply.papertrans.cn/43/4280/427956/427956_28.png

中国纪念碑 发表于 2025-3-26 14:24:21

http://reply.papertrans.cn/43/4280/427956/427956_29.png

abreast 发表于 2025-3-26 18:13:07

http://reply.papertrans.cn/43/4280/427956/427956_30.png
页: 1 2 [3] 4
查看完整版本: Titlebook: Holomorphic Q Classes; Jie Xiao Book 2001 Springer-Verlag Berlin Heidelberg 2001 Area.Blaschke product.Canon.Factor.Invariant.compactness.