胃口 发表于 2025-3-21 17:00:21
书目名称Holomorphic Functions in the Plane and n-dimensional Space影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0427953<br><br> <br><br>书目名称Holomorphic Functions in the Plane and n-dimensional Space影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0427953<br><br> <br><br>书目名称Holomorphic Functions in the Plane and n-dimensional Space网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0427953<br><br> <br><br>书目名称Holomorphic Functions in the Plane and n-dimensional Space网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0427953<br><br> <br><br>书目名称Holomorphic Functions in the Plane and n-dimensional Space被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0427953<br><br> <br><br>书目名称Holomorphic Functions in the Plane and n-dimensional Space被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0427953<br><br> <br><br>书目名称Holomorphic Functions in the Plane and n-dimensional Space年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0427953<br><br> <br><br>书目名称Holomorphic Functions in the Plane and n-dimensional Space年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0427953<br><br> <br><br>书目名称Holomorphic Functions in the Plane and n-dimensional Space读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0427953<br><br> <br><br>书目名称Holomorphic Functions in the Plane and n-dimensional Space读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0427953<br><br> <br><br>勾引 发表于 2025-3-21 23:48:58
http://reply.papertrans.cn/43/4280/427953/427953_2.png不断的变动 发表于 2025-3-22 02:47:50
http://reply.papertrans.cn/43/4280/427953/427953_3.png轻信 发表于 2025-3-22 06:46:34
http://reply.papertrans.cn/43/4280/427953/427953_4.png字形刻痕 发表于 2025-3-22 10:17:44
Klaus Gürlebeck,Klaus Habetha,Wolfgang SprößigFirst textbook on elementary level introducing to classical complex analysis and its generalizations at the same time.Includes supplementary material:neutrophils 发表于 2025-3-22 13:16:04
http://image.papertrans.cn/h/image/427953.jpg纹章 发表于 2025-3-22 17:11:15
978-3-7643-8271-1Birkhäuser Basel 2008delta-waves 发表于 2025-3-22 22:11:08
Functions,We know already distances in ℂ, ℍ and .. They all have the following properties and define therefore a . in the respective sets: We have for a . .(., .) for all ., ., .:SHOCK 发表于 2025-3-23 03:49:34
Integration and integral theorems,The Cauchy integral theorem belongs to the central results of complex analysis and tells us in its classical formulation that, for a holomorphic function . in a domain ., the integral along a sufficiently smooth closed curve which is located in . has always the value zero.Embolic-Stroke 发表于 2025-3-23 07:09:22
Series expansions and local behavior,In this section we will use Cauchy’s integral theorem and the integral formula to derive results concerning the convergence behavior of function sequences.