coherent 发表于 2025-3-21 18:58:35

书目名称Holomorphic Foliations with Singularities影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0427948<br><br>        <br><br>书目名称Holomorphic Foliations with Singularities影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0427948<br><br>        <br><br>书目名称Holomorphic Foliations with Singularities网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0427948<br><br>        <br><br>书目名称Holomorphic Foliations with Singularities网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0427948<br><br>        <br><br>书目名称Holomorphic Foliations with Singularities被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0427948<br><br>        <br><br>书目名称Holomorphic Foliations with Singularities被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0427948<br><br>        <br><br>书目名称Holomorphic Foliations with Singularities年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0427948<br><br>        <br><br>书目名称Holomorphic Foliations with Singularities年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0427948<br><br>        <br><br>书目名称Holomorphic Foliations with Singularities读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0427948<br><br>        <br><br>书目名称Holomorphic Foliations with Singularities读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0427948<br><br>        <br><br>

Complement 发表于 2025-3-21 23:27:43

Foliations on Complex Projective Spaces,ex projective spaces. We will be mainly concerned with the codimension one case. We will reinforce the idea that .. We also show the natural interplay between algebraic geometry and the theory of holomorphic foliations with singularities.

intention 发表于 2025-3-22 03:20:09

2524-6755 heory with modern results on the topic.Includes relevant opeThis concise textbook gathers together key concepts and modern results on the theory of holomorphic foliations with singularities, offering a compelling vision on how the notion of foliation, usually linked to real functions and manifolds,

边缘 发表于 2025-3-22 06:22:10

Textbook 2021ng vision on how the notion of foliation, usually linked to real functions and manifolds, can have an important role in the holomorphic world, as shown by modern results from mathematicians as H. Cartan, K. Oka, T. Nishino, and M. Suzuki..The text starts with a gentle presentation of the classical n

过分 发表于 2025-3-22 09:38:57

http://reply.papertrans.cn/43/4280/427948/427948_5.png

Invigorate 发表于 2025-3-22 15:38:12

Reduction of Singularities,rious authors have given important contributions to the subject. Although the general problem of the reduction of singularities for a germ of a holomorphic foliation singularity remains open, several are the cases where it is already finished. In this chapter we describe the method of reduction of s

终止 发表于 2025-3-22 18:26:45

http://reply.papertrans.cn/43/4280/427948/427948_7.png

杀菌剂 发表于 2025-3-22 21:23:10

Foliations on Complex Projective Spaces,e very important in the description of the phenomena modeled by holomorphic foliations. In this chapter we shall study holomorphic foliations on complex projective spaces. We will be mainly concerned with the codimension one case. We will reinforce the idea that .. We also show the natural interplay

向下五度才偏 发表于 2025-3-23 03:24:13

http://reply.papertrans.cn/43/4280/427948/427948_9.png

制定 发表于 2025-3-23 09:36:53

Bruno Scárduantersucht, welches Wissen und welche Fähigkeiten die Lernenden sich unter diesen Bedingungen erwerben können, um verantwortlich an der politischen Meinungsbildung und an der Gestaltung einer demokratischen Gesellschaft mitzuwirken. Die Projektgruppe Civic Education des Berliner Max-Planck-Instituts
页: [1] 2 3 4 5
查看完整版本: Titlebook: Holomorphic Foliations with Singularities; Key Concepts and Mod Bruno Scárdua Textbook 2021 The Editor(s) (if applicable) and The Author(s)