bradycardia 发表于 2025-3-21 17:36:02

书目名称Holomorphic Curves and Global Questions in Contact Geometry影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0427943<br><br>        <br><br>书目名称Holomorphic Curves and Global Questions in Contact Geometry影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0427943<br><br>        <br><br>书目名称Holomorphic Curves and Global Questions in Contact Geometry网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0427943<br><br>        <br><br>书目名称Holomorphic Curves and Global Questions in Contact Geometry网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0427943<br><br>        <br><br>书目名称Holomorphic Curves and Global Questions in Contact Geometry被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0427943<br><br>        <br><br>书目名称Holomorphic Curves and Global Questions in Contact Geometry被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0427943<br><br>        <br><br>书目名称Holomorphic Curves and Global Questions in Contact Geometry年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0427943<br><br>        <br><br>书目名称Holomorphic Curves and Global Questions in Contact Geometry年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0427943<br><br>        <br><br>书目名称Holomorphic Curves and Global Questions in Contact Geometry读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0427943<br><br>        <br><br>书目名称Holomorphic Curves and Global Questions in Contact Geometry读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0427943<br><br>        <br><br>

隐士 发表于 2025-3-21 21:44:56

http://reply.papertrans.cn/43/4280/427943/427943_2.png

孤独无助 发表于 2025-3-22 01:25:56

An Introduction to Contact Geometry,A . on an odd-dimensional manifold . of dimension 2. + 1 is a one-form . such that the (2. + 1)-form Ω given by . defines a volume form on .. We observe that any manifold admitting a contact form is necessarily orientable, and that a contact form defines a natural orientation.

CRANK 发表于 2025-3-22 06:11:09

Finite Energy Planes and Periodic Orbits,In this chapter we will prove the main result on finite energy planes due to H. Hofer [.] (see also [.]). Namely, given any manifold . equipped with a contact form ., denote by . → . the associated contact structure and by .. the associated Reeb vector field.

commute 发表于 2025-3-22 12:43:20

http://reply.papertrans.cn/43/4280/427943/427943_5.png

史前 发表于 2025-3-22 12:53:30

http://reply.papertrans.cn/43/4280/427943/427943_6.png

Lice692 发表于 2025-3-22 20:50:05

http://reply.papertrans.cn/43/4280/427943/427943_7.png

Servile 发表于 2025-3-23 00:42:47

http://reply.papertrans.cn/43/4280/427943/427943_8.png

Organonitrile 发表于 2025-3-23 05:12:53

Disk Filling Methods and Applications,Let (., .) be a closed three dimensional contact manifold with overtwisted contact structure .. Then there exists a contractible periodic orbit for the Reeb vector field ...

镇痛剂 发表于 2025-3-23 06:04:51

http://reply.papertrans.cn/43/4280/427943/427943_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Holomorphic Curves and Global Questions in Contact Geometry; Casim Abbas,Helmut Hofer Textbook 2019 Springer Nature Switzerland AG 2019 fi