粗糙 发表于 2025-3-23 10:47:06

http://reply.papertrans.cn/43/4271/427073/427073_11.png

可触知 发表于 2025-3-23 14:23:37

http://reply.papertrans.cn/43/4271/427073/427073_12.png

有限 发表于 2025-3-23 19:31:47

http://reply.papertrans.cn/43/4271/427073/427073_13.png

Tortuous 发表于 2025-3-23 23:40:01

http://reply.papertrans.cn/43/4271/427073/427073_14.png

Abnormal 发表于 2025-3-24 03:44:16

http://reply.papertrans.cn/43/4271/427073/427073_15.png

ABIDE 发表于 2025-3-24 08:58:27

http://reply.papertrans.cn/43/4271/427073/427073_16.png

endure 发表于 2025-3-24 13:34:15

Invariant Subspaces,. into itself, so that .[.] is the formed algebra of all operators on .. If . ≠ {0}, then .[.] contains the identity operator . and ||.|| = 1, which means that .[.] is a . formed algebra. Recall that .[., .] is a Banach space whenever . is a Banach space so that .[.] is a unital Banach algebra whene

tooth-decay 发表于 2025-3-24 16:32:21

http://reply.papertrans.cn/43/4271/427073/427073_18.png

掺和 发表于 2025-3-24 22:17:54

http://image.papertrans.cn/h/image/427073.jpg

断言 发表于 2025-3-25 01:20:03

Reducing Subspaces,n Theorem) says that, if . is a Hilbert space and . is a subspace of ., then . + . = .. In other words, . (see e.g., ). Thus, in a Hilbert space, every subspace has a complementary subspace, and this only happens in a Hilbert space .
页: 1 [2] 3 4 5 6
查看完整版本: Titlebook: Hilbert Space Operators; A Problem Solving Ap Carlos S. Kubrusly Textbook 2003 Birkhäuser Boston 2003 Applied Mathematics.Finite.Hilbert sp