粗糙 发表于 2025-3-23 10:47:06
http://reply.papertrans.cn/43/4271/427073/427073_11.png可触知 发表于 2025-3-23 14:23:37
http://reply.papertrans.cn/43/4271/427073/427073_12.png有限 发表于 2025-3-23 19:31:47
http://reply.papertrans.cn/43/4271/427073/427073_13.pngTortuous 发表于 2025-3-23 23:40:01
http://reply.papertrans.cn/43/4271/427073/427073_14.pngAbnormal 发表于 2025-3-24 03:44:16
http://reply.papertrans.cn/43/4271/427073/427073_15.pngABIDE 发表于 2025-3-24 08:58:27
http://reply.papertrans.cn/43/4271/427073/427073_16.pngendure 发表于 2025-3-24 13:34:15
Invariant Subspaces,. into itself, so that .[.] is the formed algebra of all operators on .. If . ≠ {0}, then .[.] contains the identity operator . and ||.|| = 1, which means that .[.] is a . formed algebra. Recall that .[., .] is a Banach space whenever . is a Banach space so that .[.] is a unital Banach algebra whenetooth-decay 发表于 2025-3-24 16:32:21
http://reply.papertrans.cn/43/4271/427073/427073_18.png掺和 发表于 2025-3-24 22:17:54
http://image.papertrans.cn/h/image/427073.jpg断言 发表于 2025-3-25 01:20:03
Reducing Subspaces,n Theorem) says that, if . is a Hilbert space and . is a subspace of ., then . + . = .. In other words, . (see e.g., ). Thus, in a Hilbert space, every subspace has a complementary subspace, and this only happens in a Hilbert space .