Amnesty 发表于 2025-3-30 09:27:26
http://reply.papertrans.cn/43/4247/424665/424665_51.pngLINES 发表于 2025-3-30 13:25:36
http://reply.papertrans.cn/43/4247/424665/424665_52.pngerythema 发表于 2025-3-30 20:01:06
d develop an Atiyah-Hirzebruch type spectral sequence which converges to the Karoubi-Villamayor K-theory of the glued scheme. This allows us to compute K. of some interesting rings and generalize a number of previous results in the literature.Anticlimax 发表于 2025-3-30 20:50:39
Gregor Hülsken,Viola Henke,Julian Varghese,Henning Schneiderd develop an Atiyah-Hirzebruch type spectral sequence which converges to the Karoubi-Villamayor K-theory of the glued scheme. This allows us to compute K. of some interesting rings and generalize a number of previous results in the literature.STELL 发表于 2025-3-31 01:09:19
http://reply.papertrans.cn/43/4247/424665/424665_55.png施加 发表于 2025-3-31 06:03:06
Thomas Petzold,Benjamin Böhland,Anja Schuster,Nikolaus von Dercksd develop an Atiyah-Hirzebruch type spectral sequence which converges to the Karoubi-Villamayor K-theory of the glued scheme. This allows us to compute K. of some interesting rings and generalize a number of previous results in the literature.高度表 发表于 2025-3-31 10:22:05
http://reply.papertrans.cn/43/4247/424665/424665_57.png削减 发表于 2025-3-31 17:12:16
Martin Knüttel,Helmut Hildebrandt,Thorsten Hagemann,Anja Stührenbergd develop an Atiyah-Hirzebruch type spectral sequence which converges to the Karoubi-Villamayor K-theory of the glued scheme. This allows us to compute K. of some interesting rings and generalize a number of previous results in the literature.