发现 发表于 2025-3-23 11:32:09
Simon Sohrt,André Heinke,Nikita Shchekutin,Björn Eilert,Ludger Overmeyer for inductive learning of polynomial neural network mod els from data. The design of such tools contributes to better statistical data modelling when addressing tasks from various areas like system identification, chaotic time-series prediction, financial forecasting and data mining. The main claiGlaci冰 发表于 2025-3-23 15:22:15
http://reply.papertrans.cn/43/4229/422851/422851_12.pngDALLY 发表于 2025-3-23 20:20:05
http://reply.papertrans.cn/43/4229/422851/422851_13.png同步信息 发表于 2025-3-23 22:34:53
http://reply.papertrans.cn/43/4229/422851/422851_14.pngchlorosis 发表于 2025-3-24 02:37:38
http://reply.papertrans.cn/43/4229/422851/422851_15.png不出名 发表于 2025-3-24 07:33:11
http://reply.papertrans.cn/43/4229/422851/422851_16.pnglinear 发表于 2025-3-24 12:48:22
http://reply.papertrans.cn/43/4229/422851/422851_17.pngBravado 发表于 2025-3-24 17:16:21
Christopher Kirsch,Sören Kerner,Alexander Bubeck,Matthias Gruhlerhes.Presents alternative probabilistic search algorithms thaThis book provides theoretical and practical knowledge for develop ment of algorithms that infer linear and nonlinear models. It offers a methodology for inductive learning of polynomial neural network mod els from data. The design of sucAbnormal 发表于 2025-3-24 21:01:29
http://reply.papertrans.cn/43/4229/422851/422851_19.pngepidermis 发表于 2025-3-24 23:53:05
hes.Presents alternative probabilistic search algorithms thaThis book provides theoretical and practical knowledge for develop ment of algorithms that infer linear and nonlinear models. It offers a methodology for inductive learning of polynomial neural network mod els from data. The design of suc