大范围流行 发表于 2025-3-28 18:33:01

http://reply.papertrans.cn/43/4214/421363/421363_41.png

BUOY 发表于 2025-3-28 19:30:02

Introduction to Convex and Quasiconvex Analysisoncerning quasiconvex-quasiconcave bifunctions is presented, thereby avoiding the less elementary fixed point arguments. Most of the results are proved in detail and the authors have tried to make these proofs as transparent as possible. Remember that convex analysis deals with the study of convex c

Substance 发表于 2025-3-29 00:01:58

http://reply.papertrans.cn/43/4214/421363/421363_43.png

INCUR 发表于 2025-3-29 07:06:49

Nicolas Hadjisavvas,Sándor Komlósi,Siegfried Schai

Entrancing 发表于 2025-3-29 10:42:18

1571-568Xthe current state of the field. It contains fourteen chapters written by the leading experts on the respective subject; eight on generalized convexity and the remaining six on generalized monotonicity..978-1-4899-9502-5978-0-387-23393-2Series ISSN 1571-568X

catagen 发表于 2025-3-29 14:58:51

http://reply.papertrans.cn/43/4214/421363/421363_46.png

伸展 发表于 2025-3-29 17:26:45

978-1-4899-9502-5Springer-Verlag New York 2005

物质 发表于 2025-3-29 21:33:29

http://reply.papertrans.cn/43/4214/421363/421363_48.png

prolate 发表于 2025-3-30 01:27:18

https://doi.org/10.1007/978-3-663-14519-6This chapter is devoted to first and second order characterizations of quasi/pseudo convexity of a function and first order characterizations of quasi/pseudo monotonicity of a single-valued map. Some applications are given.

注视 发表于 2025-3-30 05:02:13

http://reply.papertrans.cn/43/4214/421363/421363_50.png
页: 1 2 3 4 [5] 6
查看完整版本: Titlebook: Handbook of Generalized Convexity and Generalized Monotonicity; Nicolas Hadjisavvas,Sándor Komlósi,Siegfried Schai Textbook 2005 Springer-