夹子 发表于 2025-3-21 18:21:25

书目名称Hamiltonian Partial Differential Equations and Applications影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0420638<br><br>        <br><br>书目名称Hamiltonian Partial Differential Equations and Applications影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0420638<br><br>        <br><br>书目名称Hamiltonian Partial Differential Equations and Applications网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0420638<br><br>        <br><br>书目名称Hamiltonian Partial Differential Equations and Applications网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0420638<br><br>        <br><br>书目名称Hamiltonian Partial Differential Equations and Applications被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0420638<br><br>        <br><br>书目名称Hamiltonian Partial Differential Equations and Applications被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0420638<br><br>        <br><br>书目名称Hamiltonian Partial Differential Equations and Applications年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0420638<br><br>        <br><br>书目名称Hamiltonian Partial Differential Equations and Applications年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0420638<br><br>        <br><br>书目名称Hamiltonian Partial Differential Equations and Applications读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0420638<br><br>        <br><br>书目名称Hamiltonian Partial Differential Equations and Applications读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0420638<br><br>        <br><br>

Infect 发表于 2025-3-21 22:01:41

https://doi.org/10.1007/978-1-4757-1370-1 infinite channel. Taylor observed in the 1950s that, in such a setting, the tracer diffuses at a rate proportional to 1∕., rather than the expected rate proportional to .. We provide a mathematical explanation for this enhanced diffusion using a combination of Fourier analysis and center manifold t

小争吵 发表于 2025-3-22 04:17:48

http://reply.papertrans.cn/43/4207/420638/420638_3.png

CHANT 发表于 2025-3-22 04:56:45

The Physics of the Manhattan Projectquations for a compressible fluid while the evolution of the particle densities is given by the Smoluchowski equation. The coupling between the dispersed and dense phases is obtained through the drag forces that the fluid and particles exert mutually. In the present context, the flow occupies a phys

字形刻痕 发表于 2025-3-22 12:23:17

http://reply.papertrans.cn/43/4207/420638/420638_5.png

旧式步枪 发表于 2025-3-22 13:11:51

The Physics of the Manhattan Projecttion is dissipation (Segur et al., J Fluid Mech 539:229–271, 2005), so in this paper we explore several models in the literature that incorporate various dissipative physical mechanisms. In particular, we seek theoretical models that (1) agree with measured dissipation rates in laboratory and field

Barter 发表于 2025-3-22 19:08:11

http://reply.papertrans.cn/43/4207/420638/420638_7.png

摘要记录 发表于 2025-3-22 23:20:48

https://doi.org/10.1007/978-1-4613-1051-8ment. In particular we focus on results which persist as the number . of particles tends to infinity. After recalling the FPU experiment and some classical heuristic ideas that have been used for its explanation, we concentrate on more recent rigorous results which are based on the use of (i) canoni

保留 发表于 2025-3-23 03:32:47

http://reply.papertrans.cn/43/4207/420638/420638_9.png

勤勉 发表于 2025-3-23 08:34:52

Jürgen M. Steinacker,Susan A. Ward cases for which the skew-symmetric operator . is singular. We assume that . restricted to the orthogonal complement of its kernel has a bounded inverse. With this assumption and some further genericity conditions we (a) derive an unstable eigenvalue count for the appropriate linearized operator, an
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Hamiltonian Partial Differential Equations and Applications; Philippe Guyenne,David Nicholls,Catherine Sulem Book 2015 Springer Science+Bu