SCOWL 发表于 2025-3-21 16:17:20

书目名称Hamiltonian Mechanical Systems and Geometric Quantization影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0420635<br><br>        <br><br>书目名称Hamiltonian Mechanical Systems and Geometric Quantization影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0420635<br><br>        <br><br>书目名称Hamiltonian Mechanical Systems and Geometric Quantization网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0420635<br><br>        <br><br>书目名称Hamiltonian Mechanical Systems and Geometric Quantization网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0420635<br><br>        <br><br>书目名称Hamiltonian Mechanical Systems and Geometric Quantization被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0420635<br><br>        <br><br>书目名称Hamiltonian Mechanical Systems and Geometric Quantization被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0420635<br><br>        <br><br>书目名称Hamiltonian Mechanical Systems and Geometric Quantization年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0420635<br><br>        <br><br>书目名称Hamiltonian Mechanical Systems and Geometric Quantization年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0420635<br><br>        <br><br>书目名称Hamiltonian Mechanical Systems and Geometric Quantization读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0420635<br><br>        <br><br>书目名称Hamiltonian Mechanical Systems and Geometric Quantization读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0420635<br><br>        <br><br>

词根词缀法 发表于 2025-3-21 20:36:14

Lie Groups. Momentum Mappings. Reduction.,le and Jacobi on the elimination of the node and the fixing of the center of mass in the n-body problem, as well as the coadjoint orbit’s theorem. This method is also significant in various physical examples.

Negotiate 发表于 2025-3-22 02:17:16

Hamilton-Poisson Mechanics,sical variables. This chapter develops the most important theoretical topics in Hamilton-Poisson mechanics in the general setting of Poisson manifolds..This chapter develops the most important theoretical topics in Hamilton-Poisson mechanics in the general setting of Poisson manifolds.

Uncultured 发表于 2025-3-22 05:57:01

Geometric Prequantization,ble progress has been made by returning to an examination of the mathematical foundations of classical physics and noting that they can be simply and elegantly phrased in terms of symplectic geometry. The resulting quantization theory, geometric quantization, is an outgrowth of independent work by K

间谍活动 发表于 2025-3-22 12:26:11

Geometric Quantization,en it is clear that the corresponding operators δ. do not agree, and the Hilbert representation spaces are different. More precisely, the Hilbert space of the first consists of functions of . and . simultaneously, in the second case the Hilbert space consists of functions depending on the . only. Th

本土 发表于 2025-3-22 14:11:50

http://reply.papertrans.cn/43/4207/420635/420635_6.png

FLINT 发表于 2025-3-22 20:44:20

https://doi.org/10.1007/978-3-031-34640-8t be solved with another techniques and it also helps us to understand the general character of motion in more complicated mechanical systems such as ergodic theory, statistical mechanics and quantum mechanics.

entail 发表于 2025-3-22 21:30:47

The Physics and Physical Chemistry of Waterle and Jacobi on the elimination of the node and the fixing of the center of mass in the n-body problem, as well as the coadjoint orbit’s theorem. This method is also significant in various physical examples.

Traumatic-Grief 发表于 2025-3-23 02:08:21

http://reply.papertrans.cn/43/4207/420635/420635_9.png

切碎 发表于 2025-3-23 08:51:24

http://reply.papertrans.cn/43/4207/420635/420635_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Hamiltonian Mechanical Systems and Geometric Quantization; Mircea Puta Book 1993 Springer Science+Business Media Dordrecht 1993 Hamiltonia