GOAT
发表于 2025-3-25 06:11:24
https://doi.org/10.1007/978-3-030-27227-2Symplectic geometry; Equivariant cohomology; Moduli spaces; Flat connections; Gauge theory
含糊
发表于 2025-3-25 10:51:12
Book 2019 of symplectic vector spaces, followed by symplectic manifolds and then Hamiltonian group actions and the Darboux theorem. After discussing moment maps and orbits of the coadjoint action, symplectic quotients are studied. The convexity theorem and toric manifolds come next and we give a comprehensiv
盘旋
发表于 2025-3-25 13:16:57
http://reply.papertrans.cn/43/4207/420634/420634_23.png
喃喃而言
发表于 2025-3-25 17:22:55
Toric Manifolds,symmetry as possible—when the torus is of largest possible dimension for the action to be effective. The main result of this chapter, due to Delzant, says that in the case of maximal symmetry the polytope completely determines the Hamiltonian .-space, where . is a torus.
谄媚于人
发表于 2025-3-25 21:00:42
http://reply.papertrans.cn/43/4207/420634/420634_25.png
废除
发表于 2025-3-26 02:30:54
http://reply.papertrans.cn/43/4207/420634/420634_26.png
不在灌木丛中
发表于 2025-3-26 04:30:46
http://reply.papertrans.cn/43/4207/420634/420634_27.png
entice
发表于 2025-3-26 08:31:14
Equivariant Cohomology,al dependence on .. A version of de Rham cohomology can be developed for the Cartan model. The localization theorem of Atiyah–Bott and Berline–Vergne describes the evaluation of such an equivariantly closed differential form on the fundamental class of the manifold.
Precursor
发表于 2025-3-26 12:54:15
http://reply.papertrans.cn/43/4207/420634/420634_29.png
汇总
发表于 2025-3-26 19:37:54
http://reply.papertrans.cn/43/4207/420634/420634_30.png