GOAT 发表于 2025-3-25 06:11:24
https://doi.org/10.1007/978-3-030-27227-2Symplectic geometry; Equivariant cohomology; Moduli spaces; Flat connections; Gauge theory含糊 发表于 2025-3-25 10:51:12
Book 2019 of symplectic vector spaces, followed by symplectic manifolds and then Hamiltonian group actions and the Darboux theorem. After discussing moment maps and orbits of the coadjoint action, symplectic quotients are studied. The convexity theorem and toric manifolds come next and we give a comprehensiv盘旋 发表于 2025-3-25 13:16:57
http://reply.papertrans.cn/43/4207/420634/420634_23.png喃喃而言 发表于 2025-3-25 17:22:55
Toric Manifolds,symmetry as possible—when the torus is of largest possible dimension for the action to be effective. The main result of this chapter, due to Delzant, says that in the case of maximal symmetry the polytope completely determines the Hamiltonian .-space, where . is a torus.谄媚于人 发表于 2025-3-25 21:00:42
http://reply.papertrans.cn/43/4207/420634/420634_25.png废除 发表于 2025-3-26 02:30:54
http://reply.papertrans.cn/43/4207/420634/420634_26.png不在灌木丛中 发表于 2025-3-26 04:30:46
http://reply.papertrans.cn/43/4207/420634/420634_27.pngentice 发表于 2025-3-26 08:31:14
Equivariant Cohomology,al dependence on .. A version of de Rham cohomology can be developed for the Cartan model. The localization theorem of Atiyah–Bott and Berline–Vergne describes the evaluation of such an equivariantly closed differential form on the fundamental class of the manifold.Precursor 发表于 2025-3-26 12:54:15
http://reply.papertrans.cn/43/4207/420634/420634_29.png汇总 发表于 2025-3-26 19:37:54
http://reply.papertrans.cn/43/4207/420634/420634_30.png