chondrocyte 发表于 2025-3-21 18:03:10
书目名称Hamiltonian Dynamical Systems and Applications影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0420631<br><br> <br><br>书目名称Hamiltonian Dynamical Systems and Applications影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0420631<br><br> <br><br>书目名称Hamiltonian Dynamical Systems and Applications网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0420631<br><br> <br><br>书目名称Hamiltonian Dynamical Systems and Applications网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0420631<br><br> <br><br>书目名称Hamiltonian Dynamical Systems and Applications被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0420631<br><br> <br><br>书目名称Hamiltonian Dynamical Systems and Applications被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0420631<br><br> <br><br>书目名称Hamiltonian Dynamical Systems and Applications年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0420631<br><br> <br><br>书目名称Hamiltonian Dynamical Systems and Applications年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0420631<br><br> <br><br>书目名称Hamiltonian Dynamical Systems and Applications读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0420631<br><br> <br><br>书目名称Hamiltonian Dynamical Systems and Applications读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0420631<br><br> <br><br>地名表 发表于 2025-3-21 23:49:08
https://doi.org/10.1007/978-1-4684-5353-9t motions. Adiabatic perturbation theory is a mathematical tool for the asymptotic description of dynamics in such systems. This theory allows to construct adiabatic invariants, which are approximate first integrals of the systems. These quantities change by small amounts on large time intervals, ov壁画 发表于 2025-3-22 03:10:03
http://reply.papertrans.cn/43/4207/420631/420631_3.pngARM 发表于 2025-3-22 05:34:00
http://reply.papertrans.cn/43/4207/420631/420631_4.pngsigmoid-colon 发表于 2025-3-22 09:43:07
http://reply.papertrans.cn/43/4207/420631/420631_5.pngGLEAN 发表于 2025-3-22 15:23:57
https://doi.org/10.1007/978-94-017-5914-4by a procedure that is a geometric elaboration of the Lagrange multipliers rule. The intimate relation of the optimal control and Hamiltonian dynamics is fruitful for both domains; among other things, it leads to a clarification and a far going generalization of important classical results about Rie协迫 发表于 2025-3-22 17:05:58
https://doi.org/10.1007/978-94-015-7243-9finite dimensions, where the second Melnikov’s conditions are completely eliminated and the algebraic structure of the normal frequencies is not required. This theorem can be used to construct invariant tori and quasi-periodic solutions for nonlinear wave equations, Schrödinger equations and other eIRK 发表于 2025-3-22 21:29:26
The Phylogenetic System of Ephemeropteratial in dimension .. Central in this theory is the homological equation and a condition on the small divisors often known as the second Melnikov condition. The difficulties related to this condition are substantial when .≥ 2..We discuss this difficulty, and we show that a block decomposition and a TAccommodation 发表于 2025-3-23 04:20:01
http://reply.papertrans.cn/43/4207/420631/420631_9.png使无效 发表于 2025-3-23 08:34:19
The Physical Attractiveness Phenomenatablish the presence of these structures in a given near integrable systems or in systems for which good numerical information is available. We also discuss some quantitative features of the diffusion mechanisms such as time of diffusion, Hausdorff dimension of diffusing orbits, etc.