意见一致 发表于 2025-3-25 04:39:06

https://doi.org/10.1007/978-981-19-5213-5Wir haben in Kap. 6. den Begriff einer Halbordnungsrelation in einer Menge kennengelernt. Wir erklären nun:

savage 发表于 2025-3-25 09:10:44

http://reply.papertrans.cn/39/3893/389225/389225_22.png

crumble 发表于 2025-3-25 13:53:41

,Äquivalenzrelationen,Einige spezielle Relationen treten in der Mathematik so häufig auf, daß es sinnvoll ist, sie als selbständige Begriffe in die Mengenlehre aufzunehmen. Dem Studium solcher spezieller Relationen sind dieses und die nächstfolgenden Kapitel gewidmet.

使苦恼 发表于 2025-3-25 17:18:29

Halbordnungsrelationen,Wir wenden uns nun der Betrachtung von Mengen zu in denen eine reflexive, antisymmetrische und transitive Relation definiert ist.

弄污 发表于 2025-3-25 23:19:53

Funktionen und Abbildungen,Die im folgenden eingeführten Begriffe der Funktion und der Abbildung sind zentrale Begriffe in der Mathematik und werden für den Aufbau jeder mathematischen Disziplin benötigt.

Cognizance 发表于 2025-3-26 01:43:05

Halbordnungen,Wir haben in Kap. 6. den Begriff einer Halbordnungsrelation in einer Menge kennengelernt. Wir erklären nun:

学术讨论会 发表于 2025-3-26 06:17:20

http://reply.papertrans.cn/39/3893/389225/389225_27.png

民间传说 发表于 2025-3-26 10:20:44

http://reply.papertrans.cn/39/3893/389225/389225_28.png

调色板 发表于 2025-3-26 13:33:28

Operative Mengen,nennt die Zusammenfassung einer Menge und einer Familie von Operationen eine ..). Spezielle Algebren wie Gruppen, Ringe und Verbände, um nur einige Beispiele zu nennen, erhält man, wenn man an die Operationen der Algebra noch spezielle Forderungen stellt.

disparage 发表于 2025-3-26 18:32:27

http://reply.papertrans.cn/39/3893/389225/389225_30.png
页: 1 2 [3] 4 5
查看完整版本: Titlebook: ;