CLIP 发表于 2025-3-21 17:37:33
书目名称Grouping Multidimensional Data影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0388985<br><br> <br><br>书目名称Grouping Multidimensional Data影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0388985<br><br> <br><br>书目名称Grouping Multidimensional Data网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0388985<br><br> <br><br>书目名称Grouping Multidimensional Data网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0388985<br><br> <br><br>书目名称Grouping Multidimensional Data被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0388985<br><br> <br><br>书目名称Grouping Multidimensional Data被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0388985<br><br> <br><br>书目名称Grouping Multidimensional Data年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0388985<br><br> <br><br>书目名称Grouping Multidimensional Data年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0388985<br><br> <br><br>书目名称Grouping Multidimensional Data读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0388985<br><br> <br><br>书目名称Grouping Multidimensional Data读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0388985<br><br> <br><br>vasculitis 发表于 2025-3-21 20:26:49
http://reply.papertrans.cn/39/3890/388985/388985_2.pngFibrinogen 发表于 2025-3-22 04:14:41
https://doi.org/10.1007/978-1-4684-7009-3ghted graph partitioning), on a variety of high dimension sparse vector data sets representing text documents as bags of words. Performance is measured based on mutual information with a human-imposed classification. Our key findings are that in the quasiorthogonal space of word frequencies: (i) CosTraumatic-Grief 发表于 2025-3-22 06:24:07
A. K. Raychaudhuri,J. M. Peech,R. O. Pohled to the development of a number of new and novel algorithms with different complexity-quality trade-offs. Among them, a class of clustering algorithms that have relatively low computational requirements are those that treat the clustering problem as an optimization process, which seeks to maximize推测 发表于 2025-3-22 10:37:36
http://reply.papertrans.cn/39/3890/388985/388985_5.pngmortgage 发表于 2025-3-22 15:44:44
http://reply.papertrans.cn/39/3890/388985/388985_6.pngmortgage 发表于 2025-3-22 17:11:06
http://reply.papertrans.cn/39/3890/388985/388985_7.pngGAVEL 发表于 2025-3-22 23:54:35
Clustering Very Large Data Sets with Principal Direction Divisive Partitioning,ginal data in a factored form with much less memory, while preserving the individuality of each of the original samples. The scalable clustering algorithm Principal Direction Divisive Partitioning (PDDP) can use the factored form in a natural way to obtain a clustering of the original dataset..The rSTALL 发表于 2025-3-23 04:05:28
http://reply.papertrans.cn/39/3890/388985/388985_9.pngSpina-Bifida 发表于 2025-3-23 06:09:48
Sampling Methods for Building Initial Partitions, two new approaches for building such initial partitions. The first approach applies a procedure for selecting appropriate samples in the spirit of the Cross-Entropy (CE) method, and the second is based on a sequential summarizing schema. In the first approach, we use a sequential sample clustering