方面 发表于 2025-3-21 17:28:40

书目名称Group Rings and Class Groups影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0388927<br><br>        <br><br>书目名称Group Rings and Class Groups影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0388927<br><br>        <br><br>书目名称Group Rings and Class Groups网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0388927<br><br>        <br><br>书目名称Group Rings and Class Groups网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0388927<br><br>        <br><br>书目名称Group Rings and Class Groups被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0388927<br><br>        <br><br>书目名称Group Rings and Class Groups被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0388927<br><br>        <br><br>书目名称Group Rings and Class Groups年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0388927<br><br>        <br><br>书目名称Group Rings and Class Groups年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0388927<br><br>        <br><br>书目名称Group Rings and Class Groups读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0388927<br><br>        <br><br>书目名称Group Rings and Class Groups读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0388927<br><br>        <br><br>

上流社会 发表于 2025-3-21 23:00:41

Perspectives on Keynesian EconomicsThe results and arguments in the sections on the isomorphism problem are due to Leonard Scott in collaboration with K. W. Roggenkamp in the last ten years unless otherwise stated..

高原 发表于 2025-3-22 00:38:48

http://reply.papertrans.cn/39/3890/388927/388927_3.png

即席演说 发表于 2025-3-22 07:27:46

http://reply.papertrans.cn/39/3890/388927/388927_4.png

vocation 发表于 2025-3-22 08:58:20

https://doi.org/10.1007/978-981-287-465-8The aim in this section is to prove the following...... ∈ . |G| .(1) = 0 . = .(1), .(1) .1 . {Equ1 page 15}..(1) = 0.

深渊 发表于 2025-3-22 15:56:10

https://doi.org/10.1007/978-1-4613-8609-4A class sum . is the sum in . of all elements that areconjugate in . to .∈., these elements form a basis of the center .(.) of ..

深渊 发表于 2025-3-22 18:59:14

http://reply.papertrans.cn/39/3890/388927/388927_7.png

Ophthalmologist 发表于 2025-3-22 22:02:09

https://doi.org/10.1007/978-4-431-55894-1Zassenhaus conjectured in that group bases in . are not only isomorphic, they are even conjugate in the group ring .. Here we view .. This would have far reaching consequences. For example for the automorphism group of . this implies immediately that every normalized automorphism is central up to a group automorphism of the group base ..

rods366 发表于 2025-3-23 04:09:37

Kathleen Schwerdtner Máñez,Annet PauwelussenThroughout this section . is an integral domain of characteristic zero, . a finite group and no prime divisor of |.| is invertible in . . . denotes a field containing .. Therefore by the previous sections we have between group bases in . a dass sum correspondence.

牵连 发表于 2025-3-23 05:40:56

http://reply.papertrans.cn/39/3890/388927/388927_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: ;