Scuttle 发表于 2025-3-21 20:04:06
书目名称Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0388799<br><br> <br><br>书目名称Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0388799<br><br> <br><br>书目名称Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0388799<br><br> <br><br>书目名称Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0388799<br><br> <br><br>书目名称Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0388799<br><br> <br><br>书目名称Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0388799<br><br> <br><br>书目名称Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0388799<br><br> <br><br>书目名称Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0388799<br><br> <br><br>书目名称Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0388799<br><br> <br><br>书目名称Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0388799<br><br> <br><br>执 发表于 2025-3-22 00:15:09
https://doi.org/10.1007/978-3-531-92815-9 topologically stable homeomorphisms that are not topologically GH-stable. Also, we show that every topologically GH-stable circle homeomorphism is topologically stable. We then prove that every expansive homeomorphism with the shadowing property of a compact metric space is topologically GH-stable.巧办法 发表于 2025-3-22 03:27:43
http://reply.papertrans.cn/39/3888/388799/388799_3.pngAffection 发表于 2025-3-22 05:43:54
C. Brähler,V. Weiss,W. Meyhöfer equation. More precisely, we use the Gromov-Hausdorff distances between two inertial manifolds and two dynamical systems to consider the continuous dependence of the inertial manifolds and the stability of the dynamical systems on inertial manifolds induced by reaction-diffusion equations under perStable-Angina 发表于 2025-3-22 09:09:12
http://reply.papertrans.cn/39/3888/388799/388799_5.pngpacifist 发表于 2025-3-22 16:09:17
http://reply.papertrans.cn/39/3888/388799/388799_6.pngpacifist 发表于 2025-3-22 20:48:48
GH-Stability of Reaction-Diffusion Equationsto consider the continuous dependence of the global attractors and the stability of the dynamical systems on global attractors induced by a reaction-diffusion equation under perturbations of the domain. The novelty of the method is that one compares any two systems in different phase spaces without画布 发表于 2025-3-22 21:33:18
http://reply.papertrans.cn/39/3888/388799/388799_8.png火车车轮 发表于 2025-3-23 04:24:06
http://reply.papertrans.cn/39/3888/388799/388799_9.png异教徒 发表于 2025-3-23 08:18:51
C. Brähler,V. Weiss,W. Meyhöfer equation. More precisely, we use the Gromov-Hausdorff distances between two inertial manifolds and two dynamical systems to consider the continuous dependence of the inertial manifolds and the stability of the dynamical systems on inertial manifolds induced by reaction-diffusion equations under perturbations of the domain and equation.