Agitated 发表于 2025-3-21 19:01:03

书目名称Graph-Theoretic Concepts in Computer Science影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0388030<br><br>        <br><br>书目名称Graph-Theoretic Concepts in Computer Science影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0388030<br><br>        <br><br>书目名称Graph-Theoretic Concepts in Computer Science网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0388030<br><br>        <br><br>书目名称Graph-Theoretic Concepts in Computer Science网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0388030<br><br>        <br><br>书目名称Graph-Theoretic Concepts in Computer Science被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0388030<br><br>        <br><br>书目名称Graph-Theoretic Concepts in Computer Science被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0388030<br><br>        <br><br>书目名称Graph-Theoretic Concepts in Computer Science年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0388030<br><br>        <br><br>书目名称Graph-Theoretic Concepts in Computer Science年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0388030<br><br>        <br><br>书目名称Graph-Theoretic Concepts in Computer Science读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0388030<br><br>        <br><br>书目名称Graph-Theoretic Concepts in Computer Science读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0388030<br><br>        <br><br>

防水 发表于 2025-3-21 22:43:04

https://doi.org/10.1057/9780230339194r, we improve this result to the clique-width of . ≤ 3 * 2. and more importantly show that there is an exponential lower bound on this relationship. In particular, for any ., there is a graph . with treewidth = . where the clique-width of . ≥ 2..

不理会 发表于 2025-3-22 00:29:00

http://reply.papertrans.cn/39/3881/388030/388030_3.png

Trigger-Point 发表于 2025-3-22 08:17:33

On the Relationship between Clique-Width and Treewidth,r, we improve this result to the clique-width of . ≤ 3 * 2. and more importantly show that there is an exponential lower bound on this relationship. In particular, for any ., there is a graph . with treewidth = . where the clique-width of . ≥ 2..

Ceramic 发表于 2025-3-22 09:42:28

http://reply.papertrans.cn/39/3881/388030/388030_5.png

基因组 发表于 2025-3-22 13:11:40

https://doi.org/10.1007/978-1-349-14218-7f minimum cardinality. We consider the problem for planar graphs and present fixed parameter and approximation results..We also examine some other graph classes: subclasses of chordal graphs such as k-trees, strongly chordal graphs, etc., graphs with few . ., comparability graphs, and distance hereditary graphs.

基因组 发表于 2025-3-22 20:32:56

https://doi.org/10.1007/978-3-031-32107-8graphs, diamond-free graphs and chordal graphs. The number of minimal separators of graphs with bounded tree-degree is polynomial. This implies that the treewidth of graphs with bounded tree-degree can be computed efficiently, even without the model given in advance.

BRIBE 发表于 2025-3-23 00:28:51

erized computation are nicely combined and extended. The algorithm is practically efficient with running time bounded by .(1.26. + .), where . is the size of the constrained minimum vertex cover in the input graph. The algorithm is a significant improvement over the previous algorithms for the problem.

旧石器 发表于 2025-3-23 02:35:11

http://reply.papertrans.cn/39/3881/388030/388030_9.png

施加 发表于 2025-3-23 06:30:53

https://doi.org/10.1007/978-3-319-66131-5 sufficient planarity criterion in terms of projection paths over a spanning subtree of a graph. Using this criterion, we show that the 2-level cactus of . is planar if the cardinality of a minimum edge-cut of . is not equal to 2, 3 or 5. On the other hand, we give examples for non-planar 2-level cacti of graphs with these connectivities.
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: ;