骗子 发表于 2025-3-26 23:39:58
http://reply.papertrans.cn/39/3881/388011/388011_31.pnggalley 发表于 2025-3-27 01:31:30
http://reply.papertrans.cn/39/3881/388011/388011_32.pngTdd526 发表于 2025-3-27 05:45:36
http://reply.papertrans.cn/39/3881/388011/388011_33.pngbioavailability 发表于 2025-3-27 12:29:40
http://reply.papertrans.cn/39/3881/388011/388011_34.pngMaximize 发表于 2025-3-27 14:24:36
http://reply.papertrans.cn/39/3881/388011/388011_35.png职业 发表于 2025-3-27 20:43:05
http://reply.papertrans.cn/39/3881/388011/388011_36.pngBallerina 发表于 2025-3-28 01:34:50
,Parameterized Results on Acyclic Matchings with Implications for Related Problems,., . asks whether . has an acyclic matching of . (i.e., the number of edges) at least .. In this paper, we first prove that assuming ., there does not exist any .-approximation algorithm for . that approximates it within a constant factor when parameterized by .. Our reduction is general in the sens磨碎 发表于 2025-3-28 04:05:56
http://reply.papertrans.cn/39/3881/388011/388011_38.png使人烦燥 发表于 2025-3-28 08:38:07
http://reply.papertrans.cn/39/3881/388011/388011_39.pngExclaim 发表于 2025-3-28 13:57:22
,Degreewidth: A New Parameter for Solving Problems on Tournaments,lic. The degreewidth of a tournament . denoted by . is the minimum value . for which we can find an ordering . of the vertices of . such that every vertex is incident to at most . backward arcs (. an arc . such that .). Thus, a tournament is acyclic if and only if its degreewidth is zero. Additional