fasten 发表于 2025-3-21 17:22:23
书目名称Graph Theory影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0387947<br><br> <br><br>书目名称Graph Theory影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0387947<br><br> <br><br>书目名称Graph Theory网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0387947<br><br> <br><br>书目名称Graph Theory网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0387947<br><br> <br><br>书目名称Graph Theory被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0387947<br><br> <br><br>书目名称Graph Theory被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0387947<br><br> <br><br>书目名称Graph Theory年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0387947<br><br> <br><br>书目名称Graph Theory年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0387947<br><br> <br><br>书目名称Graph Theory读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0387947<br><br> <br><br>书目名称Graph Theory读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0387947<br><br> <br><br>遣返回国 发表于 2025-3-21 23:44:36
Hamiltonian Extension,can be extended to produce a round trip on the dodecahedron that visits each vertex exactly once. This led to concepts for Hamiltonian graphs . dealing with (1) for any ordered list of . vertices in ., there exists a Hamiltonian cycle in . encountering these . vertices (not necessarily consecutively烦忧 发表于 2025-3-22 03:15:33
http://reply.papertrans.cn/39/3880/387947/387947_3.pngtrigger 发表于 2025-3-22 05:02:49
http://reply.papertrans.cn/39/3880/387947/387947_4.pngoctogenarian 发表于 2025-3-22 09:13:52
Efficient Local Representations of Graphs, we can determine if two vertices are adjacent simply by examining the labels assigned to the pair of vertices (hence .). For some classes of graphs (such as planar graphs), one can devise local representations, but for others (such as bipartite graphs), this is not possible..We present a conjectureGULF 发表于 2025-3-22 14:11:29
http://reply.papertrans.cn/39/3880/387947/387947_6.pngGULF 发表于 2025-3-22 20:21:41
http://reply.papertrans.cn/39/3880/387947/387947_7.pngBrain-Imaging 发表于 2025-3-22 22:34:36
What Do Trees and Hypercubes Have in Common?, A closer inspection reveals an interesting common feature. Trees and hypercubes can be constructed using a similar sort of expansion procedure. Now, we can introduce a class of graphs that forms a common generalization of trees and hypercubes: it consists of all those graphs that can be constructedFilibuster 发表于 2025-3-23 01:33:42
Two Chromatic Conjectures: One for Vertices and One for Edges,lour puzzle has eluded proof for more than four decades, despite the attack by a few of this era’s more powerful combinatorial minds. Regarding edges, the list-colouring conjecture asserts, loosely, that list colouring is no more difficult than ordinary edge colouring. Probably first proposed by Vizlethargy 发表于 2025-3-23 06:37:35
http://reply.papertrans.cn/39/3880/387947/387947_10.png