类型 发表于 2025-3-25 06:20:43
http://reply.papertrans.cn/39/3879/387889/387889_21.png尊敬 发表于 2025-3-25 08:25:17
http://reply.papertrans.cn/39/3879/387889/387889_22.pngCrepitus 发表于 2025-3-25 13:27:51
http://reply.papertrans.cn/39/3879/387889/387889_23.png压碎 发表于 2025-3-25 18:18:39
http://reply.papertrans.cn/39/3879/387889/387889_24.png小木槌 发表于 2025-3-25 21:49:00
http://reply.papertrans.cn/39/3879/387889/387889_25.png大范围流行 发表于 2025-3-26 03:45:42
http://reply.papertrans.cn/39/3879/387889/387889_26.pngChandelier 发表于 2025-3-26 05:08:41
Broad Learning Based on Subgraph Networks for Graph Classification,rks, etc., where subgraphs or motifs can be considered as network building blocks with particular functions to capture mesoscopic structures. Most existing studies ignored the interaction between these subgraphs, which could be of particular importance to represent the global structure at the subgraSilent-Ischemia 发表于 2025-3-26 11:30:23
Subgraph Augmentation with Application to Graph Mining,in analysis etc. However, the limitation of the general scale of benchmark datasets makes easily causes graph classification models to fall into overfitting and undergeneralization. In this chapter, the . framework is introduced for graph classification (Zhou et al., Data augmentation for graph clas量被毁坏 发表于 2025-3-26 13:52:52
http://reply.papertrans.cn/39/3879/387889/387889_29.pngAdrenaline 发表于 2025-3-26 18:22:54
http://reply.papertrans.cn/39/3879/387889/387889_30.png