Deflated 发表于 2025-3-21 16:17:08

书目名称Goldbach’s Problem影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0387317<br><br>        <br><br>书目名称Goldbach’s Problem影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0387317<br><br>        <br><br>书目名称Goldbach’s Problem网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0387317<br><br>        <br><br>书目名称Goldbach’s Problem网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0387317<br><br>        <br><br>书目名称Goldbach’s Problem被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0387317<br><br>        <br><br>书目名称Goldbach’s Problem被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0387317<br><br>        <br><br>书目名称Goldbach’s Problem年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0387317<br><br>        <br><br>书目名称Goldbach’s Problem年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0387317<br><br>        <br><br>书目名称Goldbach’s Problem读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0387317<br><br>        <br><br>书目名称Goldbach’s Problem读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0387317<br><br>        <br><br>

正式通知 发表于 2025-3-21 21:39:52

https://doi.org/10.1007/978-3-319-57914-6Goldbach’sconjecture; Hardy-Littlewood circle method; Prime Number Theorem; Vaughan’s proof; Vinogrado

责难 发表于 2025-3-22 01:34:21

http://reply.papertrans.cn/39/3874/387317/387317_3.png

陶醉 发表于 2025-3-22 08:32:07

http://reply.papertrans.cn/39/3874/387317/387317_4.png

反馈 发表于 2025-3-22 09:19:57

https://doi.org/10.1007/978-3-031-32935-7In the first section, we begin with some lemmas and theorems which will be useful in presenting a step-by-step proof of Vinogradov’s theorem, which states that there exists a natural number ., such that every odd positive integer ., with ., can be represented as the sum of three prime numbers. The experienced reader may wish to skip this section.

渗入 发表于 2025-3-22 13:58:26

,Link design — electronic considerations,In this chapter, we present the result of H. Maier and M. Th. Rassias that under the assumption of the Generalized Riemann Hypothesis each sufficiently large odd integer can be expressed as the sum of a prime and two isolated primes.

渗入 发表于 2025-3-22 19:33:50

Ray A. Waller,Vincent T. CovelloIn this chapter we provide an outline of the proof of Schnirelmann’s theorem which states that there exists a positive integer ., such that every integer greater than 1 can be represented as the sum of at most . prime numbers.

使显得不重要 发表于 2025-3-22 23:07:35

Introduction,In 1742 C. Goldbach, in two letters sent to L. Euler, formulated two conjectures. The first conjecture stated that every even integer can be represented as the sum of two prime numbers, and the second one, that every integer greater than 2 can be represented as the sum of three prime numbers.

保守 发表于 2025-3-23 04:21:11

,Step-by-Step Proof of Vinogradov’s Theorem,In the first section, we begin with some lemmas and theorems which will be useful in presenting a step-by-step proof of Vinogradov’s theorem, which states that there exists a natural number ., such that every odd positive integer ., with ., can be represented as the sum of three prime numbers. The experienced reader may wish to skip this section.

我吃花盘旋 发表于 2025-3-23 08:16:26

http://reply.papertrans.cn/39/3874/387317/387317_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Goldbach’s Problem; Selected Topics Michael Th. Rassias Book 2017 Springer International Publishing AG 2017 Goldbach’s conjecture.Hardy-Li