退缩 发表于 2025-3-21 16:40:20
书目名称Global Optimization with Non-Convex Constraints影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0386440<br><br> <br><br>书目名称Global Optimization with Non-Convex Constraints影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0386440<br><br> <br><br>书目名称Global Optimization with Non-Convex Constraints网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0386440<br><br> <br><br>书目名称Global Optimization with Non-Convex Constraints网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0386440<br><br> <br><br>书目名称Global Optimization with Non-Convex Constraints被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0386440<br><br> <br><br>书目名称Global Optimization with Non-Convex Constraints被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0386440<br><br> <br><br>书目名称Global Optimization with Non-Convex Constraints年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0386440<br><br> <br><br>书目名称Global Optimization with Non-Convex Constraints年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0386440<br><br> <br><br>书目名称Global Optimization with Non-Convex Constraints读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0386440<br><br> <br><br>书目名称Global Optimization with Non-Convex Constraints读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0386440<br><br> <br><br>营养 发表于 2025-3-21 22:19:37
http://reply.papertrans.cn/39/3865/386440/386440_2.pngABASH 发表于 2025-3-22 03:39:01
https://doi.org/10.1007/978-1-4615-4677-1Computer; STATISTICA; algorithms; computer science; global optimization; mathematics; optimization; sciencePalpable 发表于 2025-3-22 08:20:43
http://reply.papertrans.cn/39/3865/386440/386440_4.pngHandedness 发表于 2025-3-22 09:38:34
http://reply.papertrans.cn/39/3865/386440/386440_5.png接触 发表于 2025-3-22 16:37:56
http://reply.papertrans.cn/39/3865/386440/386440_6.png接触 发表于 2025-3-22 20:43:28
http://reply.papertrans.cn/39/3865/386440/386440_7.pnginfatuation 发表于 2025-3-22 23:05:00
Parallel Global Optimization Algorithms and Evaluation of the Efficiency of ParallelismThe general global optimization problem of finding a global minimizer .* and the global minimum .(.*) of the multiextremal function .(.) defined over a domain M, i.e., ., arises in different applications and numerical methods are used to find .-optimal solutions to this problem.慢跑鞋 发表于 2025-3-23 04:06:28
Global Optimization under Non-Convex Constraints — The Index ApproachConsider the constrained global minimization problem . where the objective function ., henceforth denoted ..., i.e., ...(.) = .(.), and left-hand sides .., 1 ≤ . ≤ ., of the constraints are assumed to be Lipschitzian respectively with constants .., 1 ≤ . ≤ . + 1, and, in general, are multi-extremal.WAG 发表于 2025-3-23 09:34:29
http://reply.papertrans.cn/39/3865/386440/386440_10.png