minutia
发表于 2025-3-21 18:50:58
书目名称Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0386275<br><br> <br><br>书目名称Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0386275<br><br> <br><br>书目名称Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0386275<br><br> <br><br>书目名称Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0386275<br><br> <br><br>书目名称Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0386275<br><br> <br><br>书目名称Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0386275<br><br> <br><br>书目名称Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0386275<br><br> <br><br>书目名称Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0386275<br><br> <br><br>书目名称Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0386275<br><br> <br><br>书目名称Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0386275<br><br> <br><br>
轻而薄
发表于 2025-3-21 20:16:50
http://reply.papertrans.cn/39/3863/386275/386275_2.png
chronicle
发表于 2025-3-22 02:01:28
http://reply.papertrans.cn/39/3863/386275/386275_3.png
不在灌木丛中
发表于 2025-3-22 05:45:16
Lagrangian and Hamiltonian Dynamics on Manifolds,his includes the assumption that the configuration manifold is a Lie group or a homogeneous space. In all cases, Euler–Lagrange equations and Hamilton’s equations are derived using variational arguments.
钉牢
发表于 2025-3-22 10:52:01
Rigid and Multi-Body Systems,n manifold is identified, and a Lagrangian function is obtained, using physical principles, that is defined on the tangent bundle of the configuration manifold. Variational methods are used to derive Euler–Lagrange equations and Hamilton’s equations. Special features of the dynamics are studied.
follicle
发表于 2025-3-22 13:42:44
Deformable Multi-Body Systems,te-dimensional configuration manifold is identified, and a Lagrangian function is obtained, using physical principles, that is defined on the tangent bundle of the configuration manifold. Variational methods are used to derive Euler–Lagrange equations and Hamilton’s equations. Special features of th
follicle
发表于 2025-3-22 19:57:56
Taeyoung Lee,Melvin Leok,N. Harris McClamrochAccessible to a broad audience of scientists and engineers.Non-trivial applications worked out in detail, allowing reader to easily apply techniques to real-world problems.Includes exercises at the en
庇护
发表于 2025-3-22 23:20:17
http://reply.papertrans.cn/39/3863/386275/386275_8.png
阉割
发表于 2025-3-23 02:50:19
Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds978-3-319-56953-6Series ISSN 1860-6245 Series E-ISSN 1860-6253
胰脏
发表于 2025-3-23 06:13:11
,, — Variants of a Scalar Adverb in German,his includes the assumption that the configuration manifold is a Lie group or a homogeneous space. In all cases, Euler–Lagrange equations and Hamilton’s equations are derived using variational arguments.